Сети Для Самых Маленьких
  • Сети для самых маленьких
  • 0. Планирование
    • 0. Документация сети
    • 1. Схемы сети
    • 2. IP-план
    • 3. Список VLAN
    • 4. План подключения оборудования по портам
    • 5. Заключение
  • 1. Подключение к оборудованию cisco
    • 0. Среда
    • 1. Способы подключения
    • 2. Управление по консоли
    • 3. Первичная настройка
    • 4. Настройка доступа
    • 5. Сброс пароля
  • 2. Коммутация
    • Теория
      • СКС, ЛВС, LAN
      • IP-адресация
      • Широковещательный домен
      • OSI
      • Путь пакета
      • VLAN
      • FAQ
    • Практика
      • Порты доступа (access)
      • Транковые порты (trunk)
      • Сеть управления и первичная настройка
      • Резюме
  • 3. Статическая маршрутизация
    • InterVlan Routing
    • Планирование расширения
    • Принципы маршрутизации
    • Настройка
    • Дополнительно
    • Материалы выпуска
  • 4. STP
    • Широковещательный шторм
    • STP
    • RSTP
    • MSTP
    • Агрегация каналов
    • Port security
    • Практика
    • Материалы выпуска
  • 5. ACL и NAT
    • Access Control List
      • Практика
    • NAT
      • Практика
    • Материалы выпуска
    • Бонусы
    • Спасибы
  • 6. Динамическая маршрутизация
    • Теория протоколов динамической маршрутизации
    • OSPF
      • Теория
      • Теория-2
      • Практика OSPF
      • Задача 1
      • Практика. Продолжение
      • Задача 2
      • Задача 3
    • EIGRP
      • Теория
      • Практика
      • Задача 4
    • Настройка передачи маршрутов между различными протоколами
    • Задача 5
    • Маршрут по умолчанию
    • Задача 6
    • Полезные команды для траблшутинга
    • Задача 7
    • Материалы
    • Полезные ссылки
  • 7. VPN
    • Введение в VPN
    • GRE
      • Абстрактная топология
      • Настройка
      • Механизм работы протокола
      • Итого
    • IPSec
      • Теория
        • Security Association
        • Трансформ-сет
      • Режимы работы IPSec
        • Туннельный режим работы IPSec
        • Практика
          • Настройка на локальной стороне
          • Настройка на обратной стороне
          • Настройка. Завершение
        • Задача 1
        • Теория
        • Задача 2
        • Транспортный режим работы IPSec
        • Задача 3
    • GRE over IPSec
      • Практика
      • Теория
      • Задача 4
      • Задача 5
    • IPSec VTI
    • DMVPN
      • Теория и практика DMVPN
      • OSPF
        • Практика
        • Теория
      • IPSec
      • NAT-Traversal
      • Задача 6
    • TShoot IPSec
    • MTU
    • Материалы выпуска
    • Полезные ссылки
  • 8. BGP и IP SLA
    • Автономные системы
    • PI и PA адреса
    • BGP
      • Теория
      • Установление BGP-сессии и процедура обмена маршрутами
      • Настройка BGP и практика
        • Настройка BGP и практика
        • Задача 1
        • Full View и Default Route
        • Задача 2
        • Looking Glass и другие инструменты
        • Control Plane и Data Plane
        • Выбор маршрута
        • Задача 3
      • Управление маршрутами
        • AS-Path ACL
        • Prefix List
        • Route Map
        • Задача 4
      • Балансировка и распределение нагрузки
        • Балансировка нагрузки
        • Задача 5
        • Распределение нагрузки
          • Исходящий
          • Задача 6
          • Входящий
        • AS-Path Prepend
        • MED
        • Анонс разных префиксов через разных ISP
        • BGP Community
        • Задача 7
        • Общая таблица по видам балансировки и распределения нагрузки
    • PBR
      • Теория
      • PBR
      • Практика
      • Задача 8
    • IP SLA
      • Настройка
      • Задача 9
      • Задача 10
    • Полезные ссылки
  • 8.1 IBGP
    • IBGP
    • Различия IBGP и EBGP
    • Проблема Эн квадрат
      • Route Reflector
        • Правила работы RR
        • Практика RR
          • Проблема резервирования
      • Конфедерации
    • Атрибуты BGP
      • Хорошо известные обязательные (Well-known Mandatory)
      • Хорошо известные необязательные (Well-known Discretionary)
      • Опциональные передаваемые/транзитивные (Optional Transitive)
      • Опциональные непередаваемые/нетранзитивные (Optional Non-transitive)
      • Community
        • Теория Community
        • Задача 7
        • Практика Community
        • Задача 8
        • Задача 9
      • Задача 6
    • Материалы выпуска
    • Задача 1
    • Задача 2
    • Практика
      • EBGP
      • iBGP
      • iBGP
      • Задача 3
      • Настройка внутренней маршрутизации. OSPF
      • Настраиваем BGP
      • Задача 4
      • Что мы можем улучшить?
      • Задача 5
      • Задача 6
      • Задача 7
      • Задача 8
      • Задача 9
    • Послесловие
  • 9. Multicast
    • Общее понимание Multicast
      • Пример I
      • Пример II
    • IGMP
      • Теория IGMP
      • Querier
      • Ещё пара слов о других версиях IGMP
      • Повторим ещё раз
      • И ещё раз
    • PIM
      • PIM Dense Mode
      • PIM Sparse Mode
      • Чтобы разобраться с тем, что такое PIM, обратимся к сети гораздо более сложной
      • Разбор полётов
        • RP
        • Бритва Оккама или отключение ненужных ветвей
        • SPT Switchover — переключение RPT-SPT
        • Задача 1
        • Задача 2
      • DR, Assert, Forwarder
      • Выбор RP
      • Завершение
    • SSM
    • BIDIR PIM
    • Мультикаст на канальном уровне
      • Мультикастовые MAC-адреса
      • IGMP Snooping
      • Задача 3
      • IGMP Snooping Proxy
      • Multicast VLAN Replication
    • Заключение
  • 10. Базовый MPLS
    • Что не так с IP?
    • Заголовок MPLS
    • Пространство меток
    • Что такое MPLS
    • Передача трафика в сети MPLS
    • Терминология
    • Распространение меток
      • Методы распространение меток
        • DU против DoD
        • Ordered Control против Independent Control
        • Liberal Label Retention Mode против Conservative Label Retention Mode
        • PHP
      • Протоколы распространения меток
        • LDP
          • Практика
        • Применение чистого MPLS в связке с BGP
        • RSVP-TE
          • Практика
    • ВиО
    • Полезные ссылки
    • Спасибы
  • 11. MPLS L3VPN
    • VRF, VPN-Instance, Routing Instance
      • VRF-Lite
    • MPLS L3VPN
      • Data Plane или передача пользовательских данных
      • Роль меток MPLS
        • Транспортная метка
        • Сервисная метка
      • Терминология
      • Control Plane или передача служебной (маршрутной) информации
      • Протоколы маршрутизации
      • MBGP
        • Route Distinguisher
        • Route Target)
    • Практика
      • VRF-Lite
      • MPLS L3VPN
      • Взаимодействие между VPN
    • Трассировка в MPLS L3VPN
    • Доступ в Интернет
      • NAT на CE
        • Практика
        • Теория
        • Повторим шаги настройки
      • VRF Aware NAT
        • Практика
        • Теория
      • Common Services
    • ВиО
    • Полезные ссылки
  • 12. MPLS L2VPN
    • О технологиях L2VPN
    • VPWS
      • Data Plane
      • Control Plane
      • Практика
      • Теория
      • Виды VPWS
    • VPLS
      • Data Plane
      • Control Plane
      • VPLS Martini Mode (targeted LDP)
        • Практика
        • Теория
      • VPLS Kompella Mode (BGP)
        • Обнаружение соседей или Auto-Discovery
        • Передача префиксов
        • Распределение меток и механизм Label Block
        • Практика
        • Теория
      • Martini vs. Kompella
      • Иерархический VPLS (H-VPLS)
        • Практика H-VPLS
        • Теория
    • Проблемы VPLS
    • Полезные ссылки
    • Спасибы
  • 12.1. MPLS EVPN
    • Вспоминаем VPLS
    • Базовая часть технологии EVPN
    • Лаборатория для тестов и конфигурации
    • Маршруты EVPN
      • Маршрут типа 3 (Inclusive Multicast Ethernet Tag Route)
      • Маршрут типа 2 (MAC/IP Advertisement Route)
        • Изучение MAC-адресов
      • Маршрут типа 1 (Ethernet Auto-Discovery Route)
        • Автоматический поиск multihomed PE и ESI label
        • MAC Mass Withdrawal
        • Aliasing label
      • Маршрут типа 4 (Ethernet Segment Route)
        • Механизм выбора DF
    • L3-функционал в EVPN
      • IRB synchronisation
      • Маршрутизация между bridge-доменами
      • Выход в другие VRF и внешние сети
    • Зачем это всё-таки нужно?
    • Заключение
  • 12.2. EVPN Multihoming
    • Практический пример
    • Проблемы Multihoming-га.
    • Что такое DF и зачем он нужен?
    • Зачем нужен маршрут типа 1 per-ESI?
    • Зачем нам маршрут типа 1, сгенерированный per-EVI?
    • А нужен ли нам MC-LAG в EVPN?
    • Заключение
  • 13. MPLS Traffic Engineering
    • Предпосылки появления MPLS TE
    • Принципы работы MPLS Traffic Engineering
    • Способы направления трафика в TE-туннель
    • Способы управления туннелями
  • 14. Packet Life
    • 0. Коротко о судьбе и пути пакета
    • 1. Уровни и плоскости
      • Forwarding/Data Plane
      • Control Plane
      • Management Plane
      • Краткий итог
    • 2. История способов обработки трафика
      • Что с тобой не так, IP?!
      • О дивный новый мир
    • 3. Типов-чипов
      • CPU — Central Processing Unit
      • RAM — Random Access Memory
      • CAM — Content-Addressable Memory
      • TCAM — Ternary Content-Addressable Memory
      • ASIC — Application Specific Integrated Circuit
      • Programmable ASIC
      • FPGA — Field Programmable Gate Array
      • NP — Network Processor
    • 4. Аппаратная архитектура коммутирующего устройства
      • Общая шина
      • Управляющий модуль
      • Интерфейсный модуль или линейная карта
        • PIC — Physical Interface Card
        • FE — Forwarding Engine
        • QoS или TM — Traffic Management
        • SerDes — Serializer, Deserializer
        • Распределённая плоскость управления (Distributed Control Plane)
      • Фабрика коммутации
    • 5. Путешествие длиною в жизнь
      • Транзитные пакеты
      • Локальные пакеты
    • Заключение
    • Спасибы
  • 15. QoS
    • 0. Чем определяется QoS?
      • Потери
      • Задержки
      • Джиттер
      • Неупорядоченная доставка
      • Полоса пропускания
    • 1. Три модели обеспечения QoS
      • Best Effort (BE)
      • IntServ
      • DiffServ
    • 2. Механизмы DiffServ
    • 3. Классификация и маркировка
      • Behavior Aggregate
      • Interface-based
      • Multi-Field
      • Маркировка внутри устройства
      • Рекомендации IETF (категории трафика, классы сервиса и модели поведения)
      • Короткий итог по классификации
    • 4. Очереди
    • 5. Предотвращение перегрузок
      • Tail Drop и Head Drop
      • RED — Random Early Detection
      • WRED — Weighted Random Early Detection
    • 6. Управление перегрузками
      • FIFO — First In, First Out
      • PQ — Priority Queuing
      • FQ - Fair Queuing
      • RR — Round-Robin
      • Короткий итог про механизмы диспетчеризации
    • 7. Ограничение скорости
      • Traffic Policing
      • Traffic Shaping
      • Шейпинг против полисинга
      • Практика Полисинг и шейпинг
      • Механизмы Leaky Bucket и Token Bucket
        • Алгоритм Leaky bucket
        • Алгоритм Token Bucket
      • Короткий итог по ограничению скорости
    • 8. Аппаратная реализация QoS
    • Полезные ссылки
    • Спасибы
  • Инструкция для контрибьютеров
Powered by GitBook
On this page
  1. 11. MPLS L3VPN
  2. Практика

MPLS L3VPN

PreviousVRF-LiteNextВзаимодействие между VPN

Last updated 6 years ago

Я предлагаю в этот раз не брать уже готовую сеть, где уже всё преднастроено. Сейчас интереснее будет пройти этот путь с нуля, пусть и только вехами, не вдаваясь в детали.

Итак, мучаем всё ту же сеть, но упростим её удалением одного филиала:

наверх")

Начнём с одного клиента и двух точек подключения.

Клиентские маршрутизаторы имеют очень простую конфигурацию:

C3PO_1:

C3PO_1(config)# interface Loopback0
C3PO_1(config-if)# ip address 192.168.255.1 255.255.255.255

C3PO_1(config)# interface FastEthernet0/0
C3PO_1(config-f)# description To Linkmeup
C3PO_1(config-if)# ip address 192.168.0.2 255.255.255.0

C3PO_1(config)# router ospf 1
C3PO_1(config-router)# network 192.168.0.0 0.0.255.255 area 0

C3PO_2:

C3PO_1(config)# interface Loopback0
C3PO_1(config-if)# ip address 192.168.255.2 255.255.255.255

C3PO_1(config)# interface FastEthernet0/0
C3PO_1(config-f)# description To Linkmeup
C3PO_1(config-if)# ip address 192.168.1.2 255.255.255.0

C3PO_1(config)# router ospf 1
C3PO_1(config-router)# network 192.168.0.0 0.0.255.255 area 0

На клиентских узлах настроены линковые адреса с провайдером и интерфейс Loopback (как и прежде, мы используем этот интерфейс, чтобы имитировать сеть, дабы не плодить маршрутизаторы). То есть если на C3PO_2 мы увидим сеть 192.168.255.1/32, это значит, что мы увидели бы и всю сеть полностью. В качестве локального протокола динамической маршрутизации используется OSPF. Собственно, именно он позволит сообщить адрес Loopback-интерфейса всем заинтересованным.

Что же касается сети провайдера.

Вначале мы приведём краткий порядок настройки, а потом покажем на примере.

  • Настройка базовой связности магистральной сети: IP-адреса, IGP.

  • Включение MPLS и LDP

  • Создание VRF и привязка к интерфейсам.

  • Настройка протокола маршрутизации с CE.

  • Настройка BGP и MBGP

1) Настраиваем IP-адреса: линковые и loopback. Клиентские пока не трогаем.

Linkmeup_R1:

Linkmeup_R1(config)#interface Loopback0
Linkmeup_R1(config-if)#ip address 1.1.1.1 255.255.255.255

Linkmeup_R1(config)#interface FastEthernet0/1
Linkmeup_R1(config-if)#description To Linkmeup_R2
Linkmeup_R1(config-if)#ip address 10.0.12.1 255.255.255.0

Linkmeup_R2:

Linkmeup_R2(config)#interface Loopback0
Linkmeup_R2(config-if)#ip address 2.2.2.2 255.255.255.255

Linkmeup_R2(config)#interface FastEthernet0/0
Linkmeup_R2(config-if)#description To Linkmeup_R1
Linkmeup_R2(config-if)#ip address 10.0.12.2 255.255.255.0

Linkmeup_R2(config)#interface FastEthernet0/1
Linkmeup_R2(config-if)#description To Linkmeup_R3
Linkmeup_R2(config-if)#ip address 10.0.23.2 255.255.255.0

Linkmeup_R3:

Linkmeup_R3(config)#interface Loopback0
Linkmeup_R3(config-if)#ip address 3.3.3.3 255.255.255.255

Linkmeup_R3(config)#interface FastEthernet0/0
Linkmeup_R3(config-if)#description To Linkmeup_R2
Linkmeup_R3(config-if)#ip address 10.0.23.3 255.255.255.0

2) Теперь поднимаем ISIS в качестве IGP — он свяжет всю сеть linkmeup, распространив маршрутную информацию о линковых и Loopback-адресах. Linkmeup_R1:

Linkmeup_R1(config)#router isis 1
Linkmeup_R1(config-router)#net 10.0000.0000.0001.00

Linkmeup_R1(config)#interface FastEthernet 0/1
Linkmeup_R1(config-if)#ip router isis 1

Linkmeup_R2:

Linkmeup_R2(config)#router isis 1
Linkmeup_R2(config-router)#net 10.0000.0000.0002.00

Linkmeup_R2(config)#interface FastEthernet 0/0
Linkmeup_R2(config-if)#ip router isis 1

Linkmeup_R2(config)#interface FastEthernet 0/1
Linkmeup_R2(config-if)#ip router isis 1

Linkmeup_R3:

Linkmeup_R3(config)#router isis 1
Linkmeup_R3(config-router)#net 10.0000.0000.0002.00

Linkmeup_R3(config)#interface FastEthernet 0/0
Linkmeup_R3(config-if)#ip router isis 1

На этом шаге получили глобальную таблицу маршрутизации — необходимая платформа для следующего шага.

3) Включаем MPLS и LDP:

Linkmeup_R1:

Linkmeup_R1(config)#mpls ip
Linkmeup_R1(config)#interface FastEthernet 0/1
Linkmeup_R1(config-if)#mpls ip

Linkmeup_R2:

Linkmeup_R2(config)#mpls ip
Linkmeup_R2(config)#interface FastEthernet 0/0
Linkmeup_R2(config-if)#mpls ip
Linkmeup_R2(config)#interface FastEthernet 0/1
Linkmeup_R2(config-if)#mpls ip

Linkmeup_R3:

Linkmeup_R3(config)#mpls ip
Linkmeup_R3(config)#interface FastEthernet 0/0
Linkmeup_R3(config-if)#mpls ip

Это базис для VPN. Эти LSP — это набор транспортных меток.

Мы выбрали здесь LDP, чтобы не усложнять конфигурацию. С RSVP-TE ещё поразбираемся в статье про Traffic Engineering.

4) Создаём VRF на двух узлах: Linkmeup_R1 и Linkmeup_R3.

Linkmeup_R1:

Linkmeup_R1(config)#ip vrf C3PO
Linkmeup_R1(config-vrf)# rd 64500:100
Linkmeup_R1(config-vrf)# route-target both 64500:100

Linkmeup_R3:

Linkmeup_R3(config)#ip vrf C3PO
Linkmeup_R3(config-vrf)# rd 64500:100
Linkmeup_R3(config-vrf)# route-target both 64500:100

Это позволяет нам обособить все данные одного клиента от других и от сети самого провайдера. Здесь же указываем RD и RT. Поскольку задача у нас простая — связать все филиалы C3PO Electronic, то сделаем RD и RT совпадающими. Причём RT на Import и RT на Export тоже будут одинаковыми. Поскольку это обычная практика, существует даже специальная директива — both — тогда создаются оба RT сразу одинаковыми. В 8-м выпуске мы выбрали номер AS для сети linkmeup — 64500. Он и используется в качестве административного поля. Выделенный номер выбирается произвольно, но отслеживается, чтобы не было совпадения с другим, уже использованным.

5) Привязываем интерфейсы к VRF и указываем на них IP-адреса.

Linkmeup_R1:

Linkmeup_R1(config)#interface FastEthernet0/0
Linkmeup_R1(config-if)# description To C3PO_Electronic_1
Linkmeup_R1(config-if)# ip vrf forwarding C3PO
Linkmeup_R1(config-if)#ip address 192.168.0.1 255.255.255.0

Linkmeup_R3:

Linkmeup_R3(config)#interface FastEthernet0/1
Linkmeup_R3(config-if)# description To C3PO_Electronic_2
Linkmeup_R3(config-if)# ip vrf forwarding C3PO
Linkmeup_R3(config-if)#ip address 192.168.1.1 255.255.255.0

6) Нужно поднять протокол маршрутизации с клиентом. В нашем случае это будет OSPF, хотя с равным успехом это мог бы быть и ISIS или EBGP. Данный процесс никак не должен пересекаться с глобальной таблицей маршрутизации, поэтому помещаем его в VRF:

Linkmeup_R1:

Linkmeup_R1(config)#router ospf 2 vrf C3PO
Linkmeup_R1(config-router)# network 192.168.0.0 0.0.255.255 area 0

Linkmeup_R3:

Linkmeup_R3(config)#router ospf 2 vrf C3PO
Linkmeup_R3(config-router)# network 192.168.0.0 0.0.255.255 area 0

Как видите, Linkmeup_R1 видит 192.168.255.1, но не видит удалённый Loopback – 192.168.255.2. Аналогично и Linkmeup_R3 видит только маршруты со своей стороны. Это потому, что через сеть провайдера пока не передаются маршруты клиента.

Первая часть — это базовая настройка соседей iBGP.

Linkmeup_R1:

Linkmeup_R1(config)#router bgp 64500
Linkmeup_R1(config-router)# neighbor 3.3.3.3 remote-as 64500
Linkmeup_R1(config-router)# neighbor 3.3.3.3 update-source Loopback0

Linkmeup_R3:

Linkmeup_R3(config)#router bgp 64500
Linkmeup_R3(config-router)# neighbor 1.1.1.1 remote-as 64500
Linkmeup_R3(config-router)# neighbor 1.1.1.1 update-source Loopback0

Вторая часть — настройка Address Family VPNv4 — это то, что позволит с Linkmeup_R1 на Linkmeup_R3 передать клиентские маршруты. Заметьте, что мы активируем передачу community, потому что этот атрибут используется RT.

Linkmeup_R1:

Linkmeup_R1(config-router)# address-family vpnv4
Linkmeup_R1(config-router-af)# neighbor 3.3.3.3 activate
Linkmeup_R1(config-router-af)# neighbor 3.3.3.3 send-community both

Linkmeup_R3:

Linkmeup_R3(config-router)# address-family vpnv4
Linkmeup_R3(config-router-af)# neighbor 1.1.1.1 activate
Linkmeup_R3(config-router-af)# neighbor 1.1.1.1 send-community both

Третья часть — это Address Family для данного конкретного VRF. Он работает с обычными IPv4 префиксами, но из VRF C3PO Electronic. Он нужен для того, чтобы передавать маршруты между MBGP и OSPF. Linkmeup_R1:

Linkmeup_R1(config-router)# address-family ipv4 vrf C3PO
Linkmeup_R1(config-router-af)# redistribute connected
Linkmeup_R1(config-router-af)# redistribute ospf 2 vrf C3PO

Linkmeup_R3:

Linkmeup_R3(config-router)# address-family ipv4 vrf C3PO
Linkmeup_R3(config-router-af)# redistribute connected
Linkmeup_R3(config-router-af)# redistribute ospf 2 vrf C3PO

Как видите, здесь настроен импорт маршрутов из процесса OSPF с номером 2. Соответственно, нужно настроить и импорт маршрутов в OSPF из BGP:

Linkmeup_R1:

Linkmeup_R1(config)#router ospf 2
Linkmeup_R1(config-router)# redistribute bgp 64500 subnets

Linkmeup_R3:

Linkmeup_R3(config)#router ospf 2
Linkmeup_R3(config-router)# redistribute bgp 64500 subnets

И вот теперь всё завертится, закрутится.

Вот и славно.

Подключение клиента по BGP Теперь подключим клиента TAR’S Robotics. Маршруты между CE и PE будут передаваться по BGP или, иными словами, поднимаем EBGP с клиентским маршрутизатором. Шаги 4 и 5 не будут отличаться. Приведём конфигурацию только одной стороны:

Linkmeup_R1(config)#ip vrf TARS
Linkmeup_R1(config-vrf)#rd 64500:200
Linkmeup_R1(config-vrf)#route-target export 64500:200
Linkmeup_R1(config-vrf)#route-target import 64500:200

Linkmeup_R1(config)#interface FastEthernet1/0
Linkmeup_R1(config-if)#description To TARS_1
Linkmeup_R1(config-if)#ip vrf forwarding TARS
Linkmeup_R1(config-if)#ip address 100.0.0.1 255.255.255.0

6) На CE EBGP настраивается самым обычным образом. TARS_1:

TARS_1(config)#router bgp 64510
TARS_1(config-router)#network 172.16.255.1 mask 255.255.255.255
TARS_1(config-router)#neighbor 100.0.0.1 remote-as 64500

Здесь указано, что TARS’ Robotics будет анонсировать свою сеть 172.16.255.1/32. OSPF по-прежнему может быть нужен, но он уже будет использоваться для маршрутизации внутри этого филиала и только.

На PE всё то же самое, только не будет нового процесс OSPF (потому что с клиентом теперь EBGP, вместо OSPF) и меняется address family ipv4 vrf TARS:

Linkmeup_R1:

Linkmeup_R1(config-router)#address-family ipv4 vrf TARS
Linkmeup_R1(config-router-af)#redistribute connected
Linkmeup_R1(config-router-af)#neighbor 100.0.0.2 remote-as 64510
Linkmeup_R1(config-router-af)#neighbor 100.0.0.2 activate

Теперь Linkmeup_R1 является BGP-соседом TARS_1:

Клиентские сети он получит сообщениями Update от CE.

7) Всё, что касается MBGP — то же самое. От того, что мы поменяли протокол взаимодействия с клиентом, в нём ничего не перевернётся. То есть уже сейчас всё должно заработать (если, конечно, вторая сторона настроена):

Что же мы натворили?

Давайте теперь проследим распространение меток.

Всё тут предельно ясно и детерминировано.

Давайте подытожим шаги настройки L3VPN с нуля в правильном порядке от общего к частному.

  1. Настроить IP-адреса провайдера: линковые и лупбэк. Все узлы, настроил и забыл.

  2. Настроить IGP в сети провайдера, чтобы обеспечить внутреннюю связность. Все узлы, настроил и забыл.

  3. Настроить MPLS + LDP (или RSVP TE, если необходимо). Все узлы, настроил и забыл.

  4. Настроить MBGP внутри сети провайдера. Только те PE, где есть клиенты, настроил и забыл.

  5. Настроить клиентские VRF, назначить RD, RT. Только те PE, где есть клиенты, настраиватся персонально для каждого.

  6. Добавить в VRF клиентские интерфейсы, настроить на них IP-адреса. Только те PE, где есть клиенты, настраиватся персонально для каждого.

  7. При необходимости поднять IGP/BGP с клиентом для обмена маршрутами. Только те PE, где есть клиенты, настраиватся персонально для каждого.

  8. Готово

Это были необходимые и достаточные действия для настройки базового L3VPN. Ну и последний сценарий в рамках практики — это

На этом шаге у нас построены LSP между всеми парами LSR: *Пример выделения меток на _Linkmeup_R1._

В таблицах маршрутизации VRF C3PO должны появиться настроенные сети, как Directly connected.

Учитывая, что у клиента OSPF уже настроен, мы должны увидеть адреса Loopback-интерфейсов в таблице маршрутизации.

7) Вот и пришло время MBGP. Помните, мы говорили о в прошлом выпуске? Этот приём мы вполне можем использовать и здесь. Нам без надобности BGP на Linkmeup_R2 — там и не будем его поднимать.

Маршруты на PE:

Маршруты на CE:

Пинг между клиентскими сетями:

Попытка пинга провайдерской сети:

Полная конфигурация всех узлов и .

Вот что передал Linkmeup_R1 узлу Linkmeup_R3.

Вы видите здесь метку 22 для FEC 192.168.255.1 и адрес Next Hop 1.1.1.1. Как её понимает маршрутизатор? В ТМ VRF C3PO он заносит информацию о том, какой Next Hop:

Рекурсивно вычислить, как доступен 1.1.1.1:

Сервисную метку можно увидеть в таблице BGP для VRF C3PO: Кстати, здесь же видно и Next Hop.

Транспортная метка для FEC 1.1.1.1:

Но, как обычно FIB содержит всю актуальную информацию без многократных обращений к ТМ:

FIB говорит нам: упаковать пакет с 192.168.255.1 в стек меток {17, 22} и отправить его в сторону 10.0.23.2 в интерфейс FE0/0.

Файл начальной конфигурации.
BGP Free Core
с комментариями
без
DIP