Сети Для Самых Маленьких
  • Сети для самых маленьких
  • 0. Планирование
    • 0. Документация сети
    • 1. Схемы сети
    • 2. IP-план
    • 3. Список VLAN
    • 4. План подключения оборудования по портам
    • 5. Заключение
  • 1. Подключение к оборудованию cisco
    • 0. Среда
    • 1. Способы подключения
    • 2. Управление по консоли
    • 3. Первичная настройка
    • 4. Настройка доступа
    • 5. Сброс пароля
  • 2. Коммутация
    • Теория
      • СКС, ЛВС, LAN
      • IP-адресация
      • Широковещательный домен
      • OSI
      • Путь пакета
      • VLAN
      • FAQ
    • Практика
      • Порты доступа (access)
      • Транковые порты (trunk)
      • Сеть управления и первичная настройка
      • Резюме
  • 3. Статическая маршрутизация
    • InterVlan Routing
    • Планирование расширения
    • Принципы маршрутизации
    • Настройка
    • Дополнительно
    • Материалы выпуска
  • 4. STP
    • Широковещательный шторм
    • STP
    • RSTP
    • MSTP
    • Агрегация каналов
    • Port security
    • Практика
    • Материалы выпуска
  • 5. ACL и NAT
    • Access Control List
      • Практика
    • NAT
      • Практика
    • Материалы выпуска
    • Бонусы
    • Спасибы
  • 6. Динамическая маршрутизация
    • Теория протоколов динамической маршрутизации
    • OSPF
      • Теория
      • Теория-2
      • Практика OSPF
      • Задача 1
      • Практика. Продолжение
      • Задача 2
      • Задача 3
    • EIGRP
      • Теория
      • Практика
      • Задача 4
    • Настройка передачи маршрутов между различными протоколами
    • Задача 5
    • Маршрут по умолчанию
    • Задача 6
    • Полезные команды для траблшутинга
    • Задача 7
    • Материалы
    • Полезные ссылки
  • 7. VPN
    • Введение в VPN
    • GRE
      • Абстрактная топология
      • Настройка
      • Механизм работы протокола
      • Итого
    • IPSec
      • Теория
        • Security Association
        • Трансформ-сет
      • Режимы работы IPSec
        • Туннельный режим работы IPSec
        • Практика
          • Настройка на локальной стороне
          • Настройка на обратной стороне
          • Настройка. Завершение
        • Задача 1
        • Теория
        • Задача 2
        • Транспортный режим работы IPSec
        • Задача 3
    • GRE over IPSec
      • Практика
      • Теория
      • Задача 4
      • Задача 5
    • IPSec VTI
    • DMVPN
      • Теория и практика DMVPN
      • OSPF
        • Практика
        • Теория
      • IPSec
      • NAT-Traversal
      • Задача 6
    • TShoot IPSec
    • MTU
    • Материалы выпуска
    • Полезные ссылки
  • 8. BGP и IP SLA
    • Автономные системы
    • PI и PA адреса
    • BGP
      • Теория
      • Установление BGP-сессии и процедура обмена маршрутами
      • Настройка BGP и практика
        • Настройка BGP и практика
        • Задача 1
        • Full View и Default Route
        • Задача 2
        • Looking Glass и другие инструменты
        • Control Plane и Data Plane
        • Выбор маршрута
        • Задача 3
      • Управление маршрутами
        • AS-Path ACL
        • Prefix List
        • Route Map
        • Задача 4
      • Балансировка и распределение нагрузки
        • Балансировка нагрузки
        • Задача 5
        • Распределение нагрузки
          • Исходящий
          • Задача 6
          • Входящий
        • AS-Path Prepend
        • MED
        • Анонс разных префиксов через разных ISP
        • BGP Community
        • Задача 7
        • Общая таблица по видам балансировки и распределения нагрузки
    • PBR
      • Теория
      • PBR
      • Практика
      • Задача 8
    • IP SLA
      • Настройка
      • Задача 9
      • Задача 10
    • Полезные ссылки
  • 8.1 IBGP
    • IBGP
    • Различия IBGP и EBGP
    • Проблема Эн квадрат
      • Route Reflector
        • Правила работы RR
        • Практика RR
          • Проблема резервирования
      • Конфедерации
    • Атрибуты BGP
      • Хорошо известные обязательные (Well-known Mandatory)
      • Хорошо известные необязательные (Well-known Discretionary)
      • Опциональные передаваемые/транзитивные (Optional Transitive)
      • Опциональные непередаваемые/нетранзитивные (Optional Non-transitive)
      • Community
        • Теория Community
        • Задача 7
        • Практика Community
        • Задача 8
        • Задача 9
      • Задача 6
    • Материалы выпуска
    • Задача 1
    • Задача 2
    • Практика
      • EBGP
      • iBGP
      • iBGP
      • Задача 3
      • Настройка внутренней маршрутизации. OSPF
      • Настраиваем BGP
      • Задача 4
      • Что мы можем улучшить?
      • Задача 5
      • Задача 6
      • Задача 7
      • Задача 8
      • Задача 9
    • Послесловие
  • 9. Multicast
    • Общее понимание Multicast
      • Пример I
      • Пример II
    • IGMP
      • Теория IGMP
      • Querier
      • Ещё пара слов о других версиях IGMP
      • Повторим ещё раз
      • И ещё раз
    • PIM
      • PIM Dense Mode
      • PIM Sparse Mode
      • Чтобы разобраться с тем, что такое PIM, обратимся к сети гораздо более сложной
      • Разбор полётов
        • RP
        • Бритва Оккама или отключение ненужных ветвей
        • SPT Switchover — переключение RPT-SPT
        • Задача 1
        • Задача 2
      • DR, Assert, Forwarder
      • Выбор RP
      • Завершение
    • SSM
    • BIDIR PIM
    • Мультикаст на канальном уровне
      • Мультикастовые MAC-адреса
      • IGMP Snooping
      • Задача 3
      • IGMP Snooping Proxy
      • Multicast VLAN Replication
    • Заключение
  • 10. Базовый MPLS
    • Что не так с IP?
    • Заголовок MPLS
    • Пространство меток
    • Что такое MPLS
    • Передача трафика в сети MPLS
    • Терминология
    • Распространение меток
      • Методы распространение меток
        • DU против DoD
        • Ordered Control против Independent Control
        • Liberal Label Retention Mode против Conservative Label Retention Mode
        • PHP
      • Протоколы распространения меток
        • LDP
          • Практика
        • Применение чистого MPLS в связке с BGP
        • RSVP-TE
          • Практика
    • ВиО
    • Полезные ссылки
    • Спасибы
  • 11. MPLS L3VPN
    • VRF, VPN-Instance, Routing Instance
      • VRF-Lite
    • MPLS L3VPN
      • Data Plane или передача пользовательских данных
      • Роль меток MPLS
        • Транспортная метка
        • Сервисная метка
      • Терминология
      • Control Plane или передача служебной (маршрутной) информации
      • Протоколы маршрутизации
      • MBGP
        • Route Distinguisher
        • Route Target)
    • Практика
      • VRF-Lite
      • MPLS L3VPN
      • Взаимодействие между VPN
    • Трассировка в MPLS L3VPN
    • Доступ в Интернет
      • NAT на CE
        • Практика
        • Теория
        • Повторим шаги настройки
      • VRF Aware NAT
        • Практика
        • Теория
      • Common Services
    • ВиО
    • Полезные ссылки
  • 12. MPLS L2VPN
    • О технологиях L2VPN
    • VPWS
      • Data Plane
      • Control Plane
      • Практика
      • Теория
      • Виды VPWS
    • VPLS
      • Data Plane
      • Control Plane
      • VPLS Martini Mode (targeted LDP)
        • Практика
        • Теория
      • VPLS Kompella Mode (BGP)
        • Обнаружение соседей или Auto-Discovery
        • Передача префиксов
        • Распределение меток и механизм Label Block
        • Практика
        • Теория
      • Martini vs. Kompella
      • Иерархический VPLS (H-VPLS)
        • Практика H-VPLS
        • Теория
    • Проблемы VPLS
    • Полезные ссылки
    • Спасибы
  • 12.1. MPLS EVPN
    • Вспоминаем VPLS
    • Базовая часть технологии EVPN
    • Лаборатория для тестов и конфигурации
    • Маршруты EVPN
      • Маршрут типа 3 (Inclusive Multicast Ethernet Tag Route)
      • Маршрут типа 2 (MAC/IP Advertisement Route)
        • Изучение MAC-адресов
      • Маршрут типа 1 (Ethernet Auto-Discovery Route)
        • Автоматический поиск multihomed PE и ESI label
        • MAC Mass Withdrawal
        • Aliasing label
      • Маршрут типа 4 (Ethernet Segment Route)
        • Механизм выбора DF
    • L3-функционал в EVPN
      • IRB synchronisation
      • Маршрутизация между bridge-доменами
      • Выход в другие VRF и внешние сети
    • Зачем это всё-таки нужно?
    • Заключение
  • 12.2. EVPN Multihoming
    • Практический пример
    • Проблемы Multihoming-га.
    • Что такое DF и зачем он нужен?
    • Зачем нужен маршрут типа 1 per-ESI?
    • Зачем нам маршрут типа 1, сгенерированный per-EVI?
    • А нужен ли нам MC-LAG в EVPN?
    • Заключение
  • 13. MPLS Traffic Engineering
    • Предпосылки появления MPLS TE
    • Принципы работы MPLS Traffic Engineering
    • Способы направления трафика в TE-туннель
    • Способы управления туннелями
  • 14. Packet Life
    • 0. Коротко о судьбе и пути пакета
    • 1. Уровни и плоскости
      • Forwarding/Data Plane
      • Control Plane
      • Management Plane
      • Краткий итог
    • 2. История способов обработки трафика
      • Что с тобой не так, IP?!
      • О дивный новый мир
    • 3. Типов-чипов
      • CPU — Central Processing Unit
      • RAM — Random Access Memory
      • CAM — Content-Addressable Memory
      • TCAM — Ternary Content-Addressable Memory
      • ASIC — Application Specific Integrated Circuit
      • Programmable ASIC
      • FPGA — Field Programmable Gate Array
      • NP — Network Processor
    • 4. Аппаратная архитектура коммутирующего устройства
      • Общая шина
      • Управляющий модуль
      • Интерфейсный модуль или линейная карта
        • PIC — Physical Interface Card
        • FE — Forwarding Engine
        • QoS или TM — Traffic Management
        • SerDes — Serializer, Deserializer
        • Распределённая плоскость управления (Distributed Control Plane)
      • Фабрика коммутации
    • 5. Путешествие длиною в жизнь
      • Транзитные пакеты
      • Локальные пакеты
    • Заключение
    • Спасибы
  • 15. QoS
    • 0. Чем определяется QoS?
      • Потери
      • Задержки
      • Джиттер
      • Неупорядоченная доставка
      • Полоса пропускания
    • 1. Три модели обеспечения QoS
      • Best Effort (BE)
      • IntServ
      • DiffServ
    • 2. Механизмы DiffServ
    • 3. Классификация и маркировка
      • Behavior Aggregate
      • Interface-based
      • Multi-Field
      • Маркировка внутри устройства
      • Рекомендации IETF (категории трафика, классы сервиса и модели поведения)
      • Короткий итог по классификации
    • 4. Очереди
    • 5. Предотвращение перегрузок
      • Tail Drop и Head Drop
      • RED — Random Early Detection
      • WRED — Weighted Random Early Detection
    • 6. Управление перегрузками
      • FIFO — First In, First Out
      • PQ — Priority Queuing
      • FQ - Fair Queuing
      • RR — Round-Robin
      • Короткий итог про механизмы диспетчеризации
    • 7. Ограничение скорости
      • Traffic Policing
      • Traffic Shaping
      • Шейпинг против полисинга
      • Практика Полисинг и шейпинг
      • Механизмы Leaky Bucket и Token Bucket
        • Алгоритм Leaky bucket
        • Алгоритм Token Bucket
      • Короткий итог по ограничению скорости
    • 8. Аппаратная реализация QoS
    • Полезные ссылки
    • Спасибы
  • Инструкция для контрибьютеров
Powered by GitBook
On this page
  1. 3. Статическая маршрутизация

Дополнительно

В случае, если с маршрутизацией не всё в порядке для траблшутинга вам понадобятся две команды: traceroute и show ip route. У первой бывает полезным, как вы видели, задать адрес источника. А последнюю можно применять с параметрами, например:

msk-arbat-gw1#sh ip route 172.16.17.0
Routing entry for 172.16.16.0/21
Known via "static", distance 1, metric 0
Routing Descriptor Blocks:
* 172.16.2.2
Route metric is 0, traffic share count is 1

Несмотря на то, что в таблице маршрутизации нет отдельной записи для подсети 172.16.17.0, маршрутизатор покажет вам, какой следующий хоп.

И ещё хотелось бы повторить самые важные вещи:

  • Когда блок данных попадает на маршрутизатор, заголовок Ethernet полностью отбрасывается и при отправке формируется совершенно новый кадр. Но IP-пакет остаётся неизменным

  • Каждый маршрутизатор в случае статической маршрутизации принимает решение о судьбе пакета исключительно самостоятельно и не знает ничего о чужих таблицах

  • Поиск в таблице идёт НЕ до первой попавшейся подходящей записи, а до тех пор, пока не будет найдено самое точное соответствие (самая узкая маска). Например, если у вас таблица маршрутизации выглядит так:

    172.16.0.0/16 is variably subnetted, 6 subnets, 3 masks
    S 172.16.0.0/16 [1/0] via 172.16.2.22
    C 172.16.2.20/30 is directly connected, FastEthernet0/0
    C 172.16.2.24/30 is directly connected, FastEthernet0/0.2
    C 172.16.2.28/30 is directly connected, FastEthernet0/0.3
    S 172.16.10.0/24 [1/0] via 172.16.2.26
    S 172.16.10.4/30 [1/0] via 172.16.2.30

    И вы передаёте данные на 172.16.10.5, то он не пойдёт ни по маршруту через 172.16.2.22 ни через 172.16.2.26, а выберет самую узкую маску (самую длинную) /30 через 172.16.2.30

  • Если IP-адресу получателя не будет соответствовать ни одна запись в таблице маршрутизации и не настроен маршрут по умолчанию (шлюз последней надежды), пакет будет просто отброшен

PreviousНастройкаNextМатериалы выпуска

Last updated 6 years ago

На этом первое знакомство с маршрутизацией можно закончить. Нам кажется, что читатель сам видит, сколько сложностей поджидает его здесь, может предположить, какой объём работы предстоит ему, если сеть разрастётся до нескольких десятков маршрутизаторов. Но надо сказать, что в современном мире статическая маршрутизация, не то чтобы не используется, конечно, ей есть место, но в подавляющем большинстве сетей, крупнее районного пионер-нета внедрены протоколы динамической маршрутизации. Среди них OSPF, EIGRP, IS-IS, RIP, которым мы посвятим отдельный выпуск и, скорее всего, не один. Но настройка статической маршрутизации в значительной степени поможет вашему общему пониманию маршрутизации. В качестве самостоятельного задания попробуйте настроить маршрутизацию между Москвой и Кемерово и ответить на вопрос, почему не пингуются устройства из сети управления.