Сети Для Самых Маленьких
  • Сети для самых маленьких
  • 0. Планирование
    • 0. Документация сети
    • 1. Схемы сети
    • 2. IP-план
    • 3. Список VLAN
    • 4. План подключения оборудования по портам
    • 5. Заключение
  • 1. Подключение к оборудованию cisco
    • 0. Среда
    • 1. Способы подключения
    • 2. Управление по консоли
    • 3. Первичная настройка
    • 4. Настройка доступа
    • 5. Сброс пароля
  • 2. Коммутация
    • Теория
      • СКС, ЛВС, LAN
      • IP-адресация
      • Широковещательный домен
      • OSI
      • Путь пакета
      • VLAN
      • FAQ
    • Практика
      • Порты доступа (access)
      • Транковые порты (trunk)
      • Сеть управления и первичная настройка
      • Резюме
  • 3. Статическая маршрутизация
    • InterVlan Routing
    • Планирование расширения
    • Принципы маршрутизации
    • Настройка
    • Дополнительно
    • Материалы выпуска
  • 4. STP
    • Широковещательный шторм
    • STP
    • RSTP
    • MSTP
    • Агрегация каналов
    • Port security
    • Практика
    • Материалы выпуска
  • 5. ACL и NAT
    • Access Control List
      • Практика
    • NAT
      • Практика
    • Материалы выпуска
    • Бонусы
    • Спасибы
  • 6. Динамическая маршрутизация
    • Теория протоколов динамической маршрутизации
    • OSPF
      • Теория
      • Теория-2
      • Практика OSPF
      • Задача 1
      • Практика. Продолжение
      • Задача 2
      • Задача 3
    • EIGRP
      • Теория
      • Практика
      • Задача 4
    • Настройка передачи маршрутов между различными протоколами
    • Задача 5
    • Маршрут по умолчанию
    • Задача 6
    • Полезные команды для траблшутинга
    • Задача 7
    • Материалы
    • Полезные ссылки
  • 7. VPN
    • Введение в VPN
    • GRE
      • Абстрактная топология
      • Настройка
      • Механизм работы протокола
      • Итого
    • IPSec
      • Теория
        • Security Association
        • Трансформ-сет
      • Режимы работы IPSec
        • Туннельный режим работы IPSec
        • Практика
          • Настройка на локальной стороне
          • Настройка на обратной стороне
          • Настройка. Завершение
        • Задача 1
        • Теория
        • Задача 2
        • Транспортный режим работы IPSec
        • Задача 3
    • GRE over IPSec
      • Практика
      • Теория
      • Задача 4
      • Задача 5
    • IPSec VTI
    • DMVPN
      • Теория и практика DMVPN
      • OSPF
        • Практика
        • Теория
      • IPSec
      • NAT-Traversal
      • Задача 6
    • TShoot IPSec
    • MTU
    • Материалы выпуска
    • Полезные ссылки
  • 8. BGP и IP SLA
    • Автономные системы
    • PI и PA адреса
    • BGP
      • Теория
      • Установление BGP-сессии и процедура обмена маршрутами
      • Настройка BGP и практика
        • Настройка BGP и практика
        • Задача 1
        • Full View и Default Route
        • Задача 2
        • Looking Glass и другие инструменты
        • Control Plane и Data Plane
        • Выбор маршрута
        • Задача 3
      • Управление маршрутами
        • AS-Path ACL
        • Prefix List
        • Route Map
        • Задача 4
      • Балансировка и распределение нагрузки
        • Балансировка нагрузки
        • Задача 5
        • Распределение нагрузки
          • Исходящий
          • Задача 6
          • Входящий
        • AS-Path Prepend
        • MED
        • Анонс разных префиксов через разных ISP
        • BGP Community
        • Задача 7
        • Общая таблица по видам балансировки и распределения нагрузки
    • PBR
      • Теория
      • PBR
      • Практика
      • Задача 8
    • IP SLA
      • Настройка
      • Задача 9
      • Задача 10
    • Полезные ссылки
  • 8.1 IBGP
    • IBGP
    • Различия IBGP и EBGP
    • Проблема Эн квадрат
      • Route Reflector
        • Правила работы RR
        • Практика RR
          • Проблема резервирования
      • Конфедерации
    • Атрибуты BGP
      • Хорошо известные обязательные (Well-known Mandatory)
      • Хорошо известные необязательные (Well-known Discretionary)
      • Опциональные передаваемые/транзитивные (Optional Transitive)
      • Опциональные непередаваемые/нетранзитивные (Optional Non-transitive)
      • Community
        • Теория Community
        • Задача 7
        • Практика Community
        • Задача 8
        • Задача 9
      • Задача 6
    • Материалы выпуска
    • Задача 1
    • Задача 2
    • Практика
      • EBGP
      • iBGP
      • iBGP
      • Задача 3
      • Настройка внутренней маршрутизации. OSPF
      • Настраиваем BGP
      • Задача 4
      • Что мы можем улучшить?
      • Задача 5
      • Задача 6
      • Задача 7
      • Задача 8
      • Задача 9
    • Послесловие
  • 9. Multicast
    • Общее понимание Multicast
      • Пример I
      • Пример II
    • IGMP
      • Теория IGMP
      • Querier
      • Ещё пара слов о других версиях IGMP
      • Повторим ещё раз
      • И ещё раз
    • PIM
      • PIM Dense Mode
      • PIM Sparse Mode
      • Чтобы разобраться с тем, что такое PIM, обратимся к сети гораздо более сложной
      • Разбор полётов
        • RP
        • Бритва Оккама или отключение ненужных ветвей
        • SPT Switchover — переключение RPT-SPT
        • Задача 1
        • Задача 2
      • DR, Assert, Forwarder
      • Выбор RP
      • Завершение
    • SSM
    • BIDIR PIM
    • Мультикаст на канальном уровне
      • Мультикастовые MAC-адреса
      • IGMP Snooping
      • Задача 3
      • IGMP Snooping Proxy
      • Multicast VLAN Replication
    • Заключение
  • 10. Базовый MPLS
    • Что не так с IP?
    • Заголовок MPLS
    • Пространство меток
    • Что такое MPLS
    • Передача трафика в сети MPLS
    • Терминология
    • Распространение меток
      • Методы распространение меток
        • DU против DoD
        • Ordered Control против Independent Control
        • Liberal Label Retention Mode против Conservative Label Retention Mode
        • PHP
      • Протоколы распространения меток
        • LDP
          • Практика
        • Применение чистого MPLS в связке с BGP
        • RSVP-TE
          • Практика
    • ВиО
    • Полезные ссылки
    • Спасибы
  • 11. MPLS L3VPN
    • VRF, VPN-Instance, Routing Instance
      • VRF-Lite
    • MPLS L3VPN
      • Data Plane или передача пользовательских данных
      • Роль меток MPLS
        • Транспортная метка
        • Сервисная метка
      • Терминология
      • Control Plane или передача служебной (маршрутной) информации
      • Протоколы маршрутизации
      • MBGP
        • Route Distinguisher
        • Route Target)
    • Практика
      • VRF-Lite
      • MPLS L3VPN
      • Взаимодействие между VPN
    • Трассировка в MPLS L3VPN
    • Доступ в Интернет
      • NAT на CE
        • Практика
        • Теория
        • Повторим шаги настройки
      • VRF Aware NAT
        • Практика
        • Теория
      • Common Services
    • ВиО
    • Полезные ссылки
  • 12. MPLS L2VPN
    • О технологиях L2VPN
    • VPWS
      • Data Plane
      • Control Plane
      • Практика
      • Теория
      • Виды VPWS
    • VPLS
      • Data Plane
      • Control Plane
      • VPLS Martini Mode (targeted LDP)
        • Практика
        • Теория
      • VPLS Kompella Mode (BGP)
        • Обнаружение соседей или Auto-Discovery
        • Передача префиксов
        • Распределение меток и механизм Label Block
        • Практика
        • Теория
      • Martini vs. Kompella
      • Иерархический VPLS (H-VPLS)
        • Практика H-VPLS
        • Теория
    • Проблемы VPLS
    • Полезные ссылки
    • Спасибы
  • 12.1. MPLS EVPN
    • Вспоминаем VPLS
    • Базовая часть технологии EVPN
    • Лаборатория для тестов и конфигурации
    • Маршруты EVPN
      • Маршрут типа 3 (Inclusive Multicast Ethernet Tag Route)
      • Маршрут типа 2 (MAC/IP Advertisement Route)
        • Изучение MAC-адресов
      • Маршрут типа 1 (Ethernet Auto-Discovery Route)
        • Автоматический поиск multihomed PE и ESI label
        • MAC Mass Withdrawal
        • Aliasing label
      • Маршрут типа 4 (Ethernet Segment Route)
        • Механизм выбора DF
    • L3-функционал в EVPN
      • IRB synchronisation
      • Маршрутизация между bridge-доменами
      • Выход в другие VRF и внешние сети
    • Зачем это всё-таки нужно?
    • Заключение
  • 12.2. EVPN Multihoming
    • Практический пример
    • Проблемы Multihoming-га.
    • Что такое DF и зачем он нужен?
    • Зачем нужен маршрут типа 1 per-ESI?
    • Зачем нам маршрут типа 1, сгенерированный per-EVI?
    • А нужен ли нам MC-LAG в EVPN?
    • Заключение
  • 13. MPLS Traffic Engineering
    • Предпосылки появления MPLS TE
    • Принципы работы MPLS Traffic Engineering
    • Способы направления трафика в TE-туннель
    • Способы управления туннелями
  • 14. Packet Life
    • 0. Коротко о судьбе и пути пакета
    • 1. Уровни и плоскости
      • Forwarding/Data Plane
      • Control Plane
      • Management Plane
      • Краткий итог
    • 2. История способов обработки трафика
      • Что с тобой не так, IP?!
      • О дивный новый мир
    • 3. Типов-чипов
      • CPU — Central Processing Unit
      • RAM — Random Access Memory
      • CAM — Content-Addressable Memory
      • TCAM — Ternary Content-Addressable Memory
      • ASIC — Application Specific Integrated Circuit
      • Programmable ASIC
      • FPGA — Field Programmable Gate Array
      • NP — Network Processor
    • 4. Аппаратная архитектура коммутирующего устройства
      • Общая шина
      • Управляющий модуль
      • Интерфейсный модуль или линейная карта
        • PIC — Physical Interface Card
        • FE — Forwarding Engine
        • QoS или TM — Traffic Management
        • SerDes — Serializer, Deserializer
        • Распределённая плоскость управления (Distributed Control Plane)
      • Фабрика коммутации
    • 5. Путешествие длиною в жизнь
      • Транзитные пакеты
      • Локальные пакеты
    • Заключение
    • Спасибы
  • 15. QoS
    • 0. Чем определяется QoS?
      • Потери
      • Задержки
      • Джиттер
      • Неупорядоченная доставка
      • Полоса пропускания
    • 1. Три модели обеспечения QoS
      • Best Effort (BE)
      • IntServ
      • DiffServ
    • 2. Механизмы DiffServ
    • 3. Классификация и маркировка
      • Behavior Aggregate
      • Interface-based
      • Multi-Field
      • Маркировка внутри устройства
      • Рекомендации IETF (категории трафика, классы сервиса и модели поведения)
      • Короткий итог по классификации
    • 4. Очереди
    • 5. Предотвращение перегрузок
      • Tail Drop и Head Drop
      • RED — Random Early Detection
      • WRED — Weighted Random Early Detection
    • 6. Управление перегрузками
      • FIFO — First In, First Out
      • PQ — Priority Queuing
      • FQ - Fair Queuing
      • RR — Round-Robin
      • Короткий итог про механизмы диспетчеризации
    • 7. Ограничение скорости
      • Traffic Policing
      • Traffic Shaping
      • Шейпинг против полисинга
      • Практика Полисинг и шейпинг
      • Механизмы Leaky Bucket и Token Bucket
        • Алгоритм Leaky bucket
        • Алгоритм Token Bucket
      • Короткий итог по ограничению скорости
    • 8. Аппаратная реализация QoS
    • Полезные ссылки
    • Спасибы
  • Инструкция для контрибьютеров
Powered by GitBook
On this page
  1. 7. VPN
  2. DMVPN
  3. OSPF

Теория

PreviousПрактикаNextIPSec

Last updated 4 years ago

Что происходит в этот момент?

1) Отправляем пинг на адрес Loopback-интерфейса в Томске 2) Согласно таблице маршрутизации, следующий хоп

nsk-obsea-gw1#sh ip route 172.16.255.132 Routing entry for 172.16.255.132/32 Known via «ospf 1», distance 110, metric 11112, type intra area Last update from 172.16.254.3 on Tunnel0, 00:18:47 ago Routing Descriptor Blocks:

  • 172.16.254.3, from 172.16.255.132, 00:18:47 ago, via Tunnel0

    Route metric is 11112, traffic share count is 1

Это адрес из сети, непосредственно подключенной к интерфейсу Tunnel 0

nsk-obsea-gw1#sh ip route 172.16.254.3 Routing entry for 172.16.254.0/24 Known via «connected», distance 0, metric 0 (connected, via interface) Routing Descriptor Blocks:

  • directly connected, via Tunnel0

    Route metric is 0, traffic share count is 1

3) Согласно настройкам интерфейса здесь используется NHRP. Смотрим таблицу соответствия, полученную от хаба

nsk-obsea-gw1#sh ip nhrp brief Target Via NBMA Mode Intfc Claimed 172.16.254.1/32 172.16.254.1 198.51.100.2 static Tu0 < >

Как видите, адрес 172.16.254.3 nhrp неизвестен. Поэтому пакет ICMP отправляется на статически настроенный хаб – 198.51.100.2:

msk-arbat-gw1, fa0/1:

А хаб сразу же перенаправляет запрос на нужный адрес:

msk-arbat-gw1, fa0/1:

4) Одновременно с этим маршрутизатор-клиент в Новосибирске отправляет NHRP-запрос, мол кто укрывает адрес 172.16.254.3:

msk-arbat-gw1, fa0/1:

5) Хаб обладает этим знанием:

msk-arbat-gw1#sh ip nhr br Target Via NBMA Mode Intfc Claimed 172.16.254.2/32 172.16.254.2 198.51.101.2 dynamic Tu0 < > 172.16.254.3/32 172.16.254.3 198.51.102.2 dynamic Tu0 < >

И отправляет эту информацию в NHRP-ответе:

Больше Хаб не встревает в разговор двух споков.

6) ICMP запрос пришёл в Томск:

Несмотря на то, что во внешнем заголовке IP адрес источника – это адрес хаба, внутри фигурирует изначальный адрес Новосибирского маршрутизатора:

7)Томск тоже пока не знает ничего об адресе 172.16.254.2, пославшем ICMP-запрос.

tmsk-lenina-gw1(config-if)#do sh ip nh br Target Via NBMA Mode Intfc Claimed 172.16.254.1/32 172.16.254.1 198.51.100.2 static Tu0 < >

8) Следом за ним он интересуется о публичном адресе отправителя:

9)Ну и хаб, естественно, отвечает:

10) Сейчас на всех узлах актуальная информация NHRP:

msk-arbat-gw1(config-if)#do sh ip nhr br Target Via NBMA Mode Intfc Claimed 172.16.254.2/32 172.16.254.2 198.51.101.2 dynamic Tu0 < > 172.16.254.3/32 172.16.254.3 198.51.102.2 dynamic Tu0 < >

nsk-obsea-gw1(config-if)#do sh ip nhr br Target Via NBMA Mode Intfc Claimed 172.16.254.1/32 172.16.254.1 198.51.100.2 static Tu0 < > 172.16.254.3/32 172.16.254.3 198.51.102.2 dynamic Tu0 < >

tmsk-lenina-gw1(config-if)#do sh ip nh br Target Via NBMA Mode Intfc Claimed 172.16.254.1/32 172.16.254.1 198.51.100.2 static Tu0 < > 172.16.254.2/32 172.16.254.2 198.51.101.2 dynamic Tu0 < >

Как видите, распространение происходит не автоматически, а по запросу, причём инициаторами являются только клиенты, потому что фактически, только они знают, куда обращаться (хаб изначально не знает о клиентах ничего)

11) Следующий ICMP-запрос он уже отправит по-новому:

nsk-obsea-gw1#sh ip route 172.16.255.132 Routing entry for 172.16.255.132/32 Known via «ospf 1», distance 110, metric 11112, type intra area Last update from 172.16.254.3 on Tunnel0, 00:20:24 ago Routing Descriptor Blocks:

  • 172.16.254.3, from 172.16.255.132, 00:20:24 ago, via Tunnel0

    Route metric is 11112, traffic share count is 1

Подсеть 172.16.254.0 подключена к интерфейсу Tunnel 0

nsk-obsea-gw1#sh ip route 172.16.254.3 Routing entry for 172.16.254.0/24 Known via «connected», distance 0, metric 0 (connected, via interface) Routing Descriptor Blocks:

  • directly connected, via Tunnel0

    Route metric is 0, traffic share count is 1

12) Мы немного повторяемся, но… Интерфейс Tunnel 0 является mGRE и согласно таблицы NHRP весь трафик, для которого следующим хопом является 172.16.254.3 должен быть инкапсулирован в GRE и внешний IP-заголовок с адресом назначения 198.51.102.2 (В качестве адреса источника будет выбран адрес физического интерфейса – 198.51.101.2):

nsk-obsea-gw1(config-if)#do sh ip nhr br Target Via NBMA Mode Intfc Claimed 172.16.254.1/32 172.16.254.1 198.51.100.2 static Tu0 < > 172.16.254.3/32 172.16.254.3 198.51.102.2 dynamic Tu0 < >

13) Ну и дальше пакет с адресом получателя 198.51.102.2 отправляется согласно таблице маршрутизации:

Gateway of last resort is 198.51.101.1 to network 0.0.0.0

Тут важно понимать, что несмотря на то, что общение между филиалами осуществляется в обход центрального узла, хаб однако несёт тут жизненно важную вспомогательную функцию и без него ничего работать не будет: он предоставляет клиентам таблицу NHRP, а также анонсирует все маршруты – филиалы распространяют маршрутную информацию не непосредственно друг другу, а через хаб.

Актуальная на данный момент конфигурация узлов:

msk-arbat-gw1
interface Tunnel0
ip address 172.16.254.1 255.255.255.0
no ip redirects
ip nhrp map multicast dynamic
ip nhrp network-id 1
ip ospf network broadcast
ip ospf priority 10
tunnel source FastEthernet0/1.6
tunnel mode gre multipoint

nsk-obsea-gw1
interface Tunnel0
ip address 172.16.254.2 255.255.255.0
no ip redirects
ip nhrp map 172.16.254.1 198.51.100.2
ip nhrp map multicast 198.51.100.2
ip nhrp network-id 1
ip nhrp nhs 172.16.254.1
ip ospf network broadcast
ip ospf priority 0
tunnel source FastEthernet0/0
tunnel mode gre multipoint

tmsk-leneina-gw1
interface Tunnel0
ip address 172.16.254.3 255.255.255.0
no ip redirects
ip nhrp map 172.16.254.1 198.51.100.2
ip nhrp map multicast 198.51.100.2
ip nhrp network-id 1
ip nhrp nhs 172.16.254.1
ip ospf network broadcast
ip ospf priority 0
tunnel source FastEthernet0/0
tunnel mode gre multipoint
end

На данный момент решены следующие проблемы: 1) Связность. Филиалы подключены и доступны. 2) Маршрутизация. Через mGRE туннели успешно запущены IGP. 3) Масштабируемость. При добавлении нового spoke-маршрутизатора настраивается только он сам и нет необходимости лезть в конфигурацию уже существующих узлов. 4) Разгрузили хаб – через него передаётся только служебный трафик.

Осталось уладить вопрос с безопасностью.

msk-arbat-gw1, fa0/1:

tmsk-lenina-gw1, fa0/0:

Поэтому ICMP-ответ он отправляет тоже на хаб: tmsk-lenina-gw1, fa0/0:

tmsk-lenina-gw1, fa0/0:

tmsk-lenina-gw1, fa0/0:

tmsk-lenina-gw1, fa0/0: