Сети Для Самых Маленьких
  • Сети для самых маленьких
  • 0. Планирование
    • 0. Документация сети
    • 1. Схемы сети
    • 2. IP-план
    • 3. Список VLAN
    • 4. План подключения оборудования по портам
    • 5. Заключение
  • 1. Подключение к оборудованию cisco
    • 0. Среда
    • 1. Способы подключения
    • 2. Управление по консоли
    • 3. Первичная настройка
    • 4. Настройка доступа
    • 5. Сброс пароля
  • 2. Коммутация
    • Теория
      • СКС, ЛВС, LAN
      • IP-адресация
      • Широковещательный домен
      • OSI
      • Путь пакета
      • VLAN
      • FAQ
    • Практика
      • Порты доступа (access)
      • Транковые порты (trunk)
      • Сеть управления и первичная настройка
      • Резюме
  • 3. Статическая маршрутизация
    • InterVlan Routing
    • Планирование расширения
    • Принципы маршрутизации
    • Настройка
    • Дополнительно
    • Материалы выпуска
  • 4. STP
    • Широковещательный шторм
    • STP
    • RSTP
    • MSTP
    • Агрегация каналов
    • Port security
    • Практика
    • Материалы выпуска
  • 5. ACL и NAT
    • Access Control List
      • Практика
    • NAT
      • Практика
    • Материалы выпуска
    • Бонусы
    • Спасибы
  • 6. Динамическая маршрутизация
    • Теория протоколов динамической маршрутизации
    • OSPF
      • Теория
      • Теория-2
      • Практика OSPF
      • Задача 1
      • Практика. Продолжение
      • Задача 2
      • Задача 3
    • EIGRP
      • Теория
      • Практика
      • Задача 4
    • Настройка передачи маршрутов между различными протоколами
    • Задача 5
    • Маршрут по умолчанию
    • Задача 6
    • Полезные команды для траблшутинга
    • Задача 7
    • Материалы
    • Полезные ссылки
  • 7. VPN
    • Введение в VPN
    • GRE
      • Абстрактная топология
      • Настройка
      • Механизм работы протокола
      • Итого
    • IPSec
      • Теория
        • Security Association
        • Трансформ-сет
      • Режимы работы IPSec
        • Туннельный режим работы IPSec
        • Практика
          • Настройка на локальной стороне
          • Настройка на обратной стороне
          • Настройка. Завершение
        • Задача 1
        • Теория
        • Задача 2
        • Транспортный режим работы IPSec
        • Задача 3
    • GRE over IPSec
      • Практика
      • Теория
      • Задача 4
      • Задача 5
    • IPSec VTI
    • DMVPN
      • Теория и практика DMVPN
      • OSPF
        • Практика
        • Теория
      • IPSec
      • NAT-Traversal
      • Задача 6
    • TShoot IPSec
    • MTU
    • Материалы выпуска
    • Полезные ссылки
  • 8. BGP и IP SLA
    • Автономные системы
    • PI и PA адреса
    • BGP
      • Теория
      • Установление BGP-сессии и процедура обмена маршрутами
      • Настройка BGP и практика
        • Настройка BGP и практика
        • Задача 1
        • Full View и Default Route
        • Задача 2
        • Looking Glass и другие инструменты
        • Control Plane и Data Plane
        • Выбор маршрута
        • Задача 3
      • Управление маршрутами
        • AS-Path ACL
        • Prefix List
        • Route Map
        • Задача 4
      • Балансировка и распределение нагрузки
        • Балансировка нагрузки
        • Задача 5
        • Распределение нагрузки
          • Исходящий
          • Задача 6
          • Входящий
        • AS-Path Prepend
        • MED
        • Анонс разных префиксов через разных ISP
        • BGP Community
        • Задача 7
        • Общая таблица по видам балансировки и распределения нагрузки
    • PBR
      • Теория
      • PBR
      • Практика
      • Задача 8
    • IP SLA
      • Настройка
      • Задача 9
      • Задача 10
    • Полезные ссылки
  • 8.1 IBGP
    • IBGP
    • Различия IBGP и EBGP
    • Проблема Эн квадрат
      • Route Reflector
        • Правила работы RR
        • Практика RR
          • Проблема резервирования
      • Конфедерации
    • Атрибуты BGP
      • Хорошо известные обязательные (Well-known Mandatory)
      • Хорошо известные необязательные (Well-known Discretionary)
      • Опциональные передаваемые/транзитивные (Optional Transitive)
      • Опциональные непередаваемые/нетранзитивные (Optional Non-transitive)
      • Community
        • Теория Community
        • Задача 7
        • Практика Community
        • Задача 8
        • Задача 9
      • Задача 6
    • Материалы выпуска
    • Задача 1
    • Задача 2
    • Практика
      • EBGP
      • iBGP
      • iBGP
      • Задача 3
      • Настройка внутренней маршрутизации. OSPF
      • Настраиваем BGP
      • Задача 4
      • Что мы можем улучшить?
      • Задача 5
      • Задача 6
      • Задача 7
      • Задача 8
      • Задача 9
    • Послесловие
  • 9. Multicast
    • Общее понимание Multicast
      • Пример I
      • Пример II
    • IGMP
      • Теория IGMP
      • Querier
      • Ещё пара слов о других версиях IGMP
      • Повторим ещё раз
      • И ещё раз
    • PIM
      • PIM Dense Mode
      • PIM Sparse Mode
      • Чтобы разобраться с тем, что такое PIM, обратимся к сети гораздо более сложной
      • Разбор полётов
        • RP
        • Бритва Оккама или отключение ненужных ветвей
        • SPT Switchover — переключение RPT-SPT
        • Задача 1
        • Задача 2
      • DR, Assert, Forwarder
      • Выбор RP
      • Завершение
    • SSM
    • BIDIR PIM
    • Мультикаст на канальном уровне
      • Мультикастовые MAC-адреса
      • IGMP Snooping
      • Задача 3
      • IGMP Snooping Proxy
      • Multicast VLAN Replication
    • Заключение
  • 10. Базовый MPLS
    • Что не так с IP?
    • Заголовок MPLS
    • Пространство меток
    • Что такое MPLS
    • Передача трафика в сети MPLS
    • Терминология
    • Распространение меток
      • Методы распространение меток
        • DU против DoD
        • Ordered Control против Independent Control
        • Liberal Label Retention Mode против Conservative Label Retention Mode
        • PHP
      • Протоколы распространения меток
        • LDP
          • Практика
        • Применение чистого MPLS в связке с BGP
        • RSVP-TE
          • Практика
    • ВиО
    • Полезные ссылки
    • Спасибы
  • 11. MPLS L3VPN
    • VRF, VPN-Instance, Routing Instance
      • VRF-Lite
    • MPLS L3VPN
      • Data Plane или передача пользовательских данных
      • Роль меток MPLS
        • Транспортная метка
        • Сервисная метка
      • Терминология
      • Control Plane или передача служебной (маршрутной) информации
      • Протоколы маршрутизации
      • MBGP
        • Route Distinguisher
        • Route Target)
    • Практика
      • VRF-Lite
      • MPLS L3VPN
      • Взаимодействие между VPN
    • Трассировка в MPLS L3VPN
    • Доступ в Интернет
      • NAT на CE
        • Практика
        • Теория
        • Повторим шаги настройки
      • VRF Aware NAT
        • Практика
        • Теория
      • Common Services
    • ВиО
    • Полезные ссылки
  • 12. MPLS L2VPN
    • О технологиях L2VPN
    • VPWS
      • Data Plane
      • Control Plane
      • Практика
      • Теория
      • Виды VPWS
    • VPLS
      • Data Plane
      • Control Plane
      • VPLS Martini Mode (targeted LDP)
        • Практика
        • Теория
      • VPLS Kompella Mode (BGP)
        • Обнаружение соседей или Auto-Discovery
        • Передача префиксов
        • Распределение меток и механизм Label Block
        • Практика
        • Теория
      • Martini vs. Kompella
      • Иерархический VPLS (H-VPLS)
        • Практика H-VPLS
        • Теория
    • Проблемы VPLS
    • Полезные ссылки
    • Спасибы
  • 12.1. MPLS EVPN
    • Вспоминаем VPLS
    • Базовая часть технологии EVPN
    • Лаборатория для тестов и конфигурации
    • Маршруты EVPN
      • Маршрут типа 3 (Inclusive Multicast Ethernet Tag Route)
      • Маршрут типа 2 (MAC/IP Advertisement Route)
        • Изучение MAC-адресов
      • Маршрут типа 1 (Ethernet Auto-Discovery Route)
        • Автоматический поиск multihomed PE и ESI label
        • MAC Mass Withdrawal
        • Aliasing label
      • Маршрут типа 4 (Ethernet Segment Route)
        • Механизм выбора DF
    • L3-функционал в EVPN
      • IRB synchronisation
      • Маршрутизация между bridge-доменами
      • Выход в другие VRF и внешние сети
    • Зачем это всё-таки нужно?
    • Заключение
  • 12.2. EVPN Multihoming
    • Практический пример
    • Проблемы Multihoming-га.
    • Что такое DF и зачем он нужен?
    • Зачем нужен маршрут типа 1 per-ESI?
    • Зачем нам маршрут типа 1, сгенерированный per-EVI?
    • А нужен ли нам MC-LAG в EVPN?
    • Заключение
  • 13. MPLS Traffic Engineering
    • Предпосылки появления MPLS TE
    • Принципы работы MPLS Traffic Engineering
    • Способы направления трафика в TE-туннель
    • Способы управления туннелями
  • 14. Packet Life
    • 0. Коротко о судьбе и пути пакета
    • 1. Уровни и плоскости
      • Forwarding/Data Plane
      • Control Plane
      • Management Plane
      • Краткий итог
    • 2. История способов обработки трафика
      • Что с тобой не так, IP?!
      • О дивный новый мир
    • 3. Типов-чипов
      • CPU — Central Processing Unit
      • RAM — Random Access Memory
      • CAM — Content-Addressable Memory
      • TCAM — Ternary Content-Addressable Memory
      • ASIC — Application Specific Integrated Circuit
      • Programmable ASIC
      • FPGA — Field Programmable Gate Array
      • NP — Network Processor
    • 4. Аппаратная архитектура коммутирующего устройства
      • Общая шина
      • Управляющий модуль
      • Интерфейсный модуль или линейная карта
        • PIC — Physical Interface Card
        • FE — Forwarding Engine
        • QoS или TM — Traffic Management
        • SerDes — Serializer, Deserializer
        • Распределённая плоскость управления (Distributed Control Plane)
      • Фабрика коммутации
    • 5. Путешествие длиною в жизнь
      • Транзитные пакеты
      • Локальные пакеты
    • Заключение
    • Спасибы
  • 15. QoS
    • 0. Чем определяется QoS?
      • Потери
      • Задержки
      • Джиттер
      • Неупорядоченная доставка
      • Полоса пропускания
    • 1. Три модели обеспечения QoS
      • Best Effort (BE)
      • IntServ
      • DiffServ
    • 2. Механизмы DiffServ
    • 3. Классификация и маркировка
      • Behavior Aggregate
      • Interface-based
      • Multi-Field
      • Маркировка внутри устройства
      • Рекомендации IETF (категории трафика, классы сервиса и модели поведения)
      • Короткий итог по классификации
    • 4. Очереди
    • 5. Предотвращение перегрузок
      • Tail Drop и Head Drop
      • RED — Random Early Detection
      • WRED — Weighted Random Early Detection
    • 6. Управление перегрузками
      • FIFO — First In, First Out
      • PQ — Priority Queuing
      • FQ - Fair Queuing
      • RR — Round-Robin
      • Короткий итог про механизмы диспетчеризации
    • 7. Ограничение скорости
      • Traffic Policing
      • Traffic Shaping
      • Шейпинг против полисинга
      • Практика Полисинг и шейпинг
      • Механизмы Leaky Bucket и Token Bucket
        • Алгоритм Leaky bucket
        • Алгоритм Token Bucket
      • Короткий итог по ограничению скорости
    • 8. Аппаратная реализация QoS
    • Полезные ссылки
    • Спасибы
  • Инструкция для контрибьютеров
Powered by GitBook
On this page
  1. 6. Динамическая маршрутизация
  2. EIGRP

Теория

PreviousEIGRPNextПрактика

Last updated 2 years ago

Теперь чуть ближе к теории работы:

Каждый процесс EIGRP обслуживает 3 таблицы: — Таблицу соседей (neighbor table), в которой содержится информация о “соседях”, т.е. других маршрутизаторах, непосредственно подключенных к текущему и участвующих в обмене маршрутами. Можно посмотреть с помощью команды show ip eigrp neighbors — Таблицу топологии сети (topology table), в которой содержится информация о маршрутах, полученная от соседей. Смотрим командой show ip eigrp topology — Таблицу маршрутизации (routing table), на основе которой роутер принимает решения о перенаправлении пакетов. Просмотр через show ip route

Метрика. Для оценки качества определенного маршрута, в протоколах маршрутизации используется некое число, отражающее различные его характеристики или совокупность характеристик- метрика. Характеристики, принимаемые в расчет, могут быть разными- начиная от количества роутеров на данном маршруте и заканчивая средним арифметическим загрузки всех интерфейсов по ходу маршрута. Что касается метрики EIGRP, процитируем Jeremy Cioara: “у меня создалось впечатление, что создатели EIGRP, окинув критическим взглядом свое творение, решили, что все слишком просто и хорошо работает. И тогда они придумали формулу метрики, что бы все сказали “ВАУ, это действительно сложно и профессионально выглядит”. Узрите же полную формулу подсчета метрики EIGRP: (K1 bw + (K2 bw) / (256 — load) + K3 delay) (K5 / (reliability + K4)), в которой: — bw это не просто пропускная способность, а (10000000/самая маленькая пропускная способность по дороге маршрута в килобитах) 256 — delay это не просто задержка, а сумма всех задержек по дороге в десятках микросекунд 256 (delay в командах show interface, show ip eigrp topology и прочих показывается в микросекундах!) — K1-K5 это коэффициенты, которые служат для того, чтобы в формулу “включился” тот или иной параметр.

Страшно? было бы, если бы все это работало, как написано. На деле же из всех 4 возможных слагаемых формулы, по умолчанию используются только два: bw и delay (коэффициенты K1 и K3=1, остальные нулю), что сильно ее упрощает — мы просто складываем эти два числа (не забывая при этом, что они все равно считаются по своим формулам). Важно помнить следующее: метрика считается по худшему показателю пропускной способности по всей длине маршрута. Если K5=0, то используется следующая формула: Metric = (K1 bw + (K2 bw) / (256 — load) + (K3 * delay)

Интересная штука получилась с MTU: довольно часто можно встретить сведения о том, что MTU имеет отношение к метрике EIGRP. И действительно, значения MTU передаются при обмене маршрутами. Но, как мы можем видеть из полной формулы, никакого упоминания об MTU там нет. Дело в том, что этот показатель принимается в расчет в довольно специфических случаях: например, если роутер должен отбросить один из равнозначных по остальным характеристикам маршрутов, он выберет тот, у которого меньший MTU. Хотя, (см. комментарии).

Определимся с терминами, применяемыми внутри EIGRP. Каждый маршрут в EIGRP характеризуется двумя числами: Feasible Distance и Advertised Distance (вместо Advertised Distance иногда можно встретить Reported Distance, это одно и то же). Каждое из этих чисел представляет собой метрику, или стоимость (чем больше-тем хуже) данного маршрута с разных точек измерения: FD это “от меня до места назначения”, а AD- “от соседа, который мне рассказал об этом маршруте, до места назначения”. Ответ на закономерный вопрос “Зачем нам надо знать стоимость от соседа, если она и так включена в FD?”- чуть ниже (пока можете остановиться и поломать голову сами, если хотите).

У каждой подсети, о которой знает EIGRP, на каждом роутере существует Successor- роутер из числа соседей, через который идет лучший (с меньшей метрикой), по мнению протокола, маршрут к этой подсети. Кроме того, у подсети может также существовать один или несколько запасных маршрутов (роутер-сосед, через которого идет такой маршрут, называется Feasible Successor). EIGRP- единственный протокол маршрутизации, запоминающий запасные маршруты (в OSPF они есть, но содержатся, так сказать, в “сыром виде” в таблице топологии- их еще надо обработать алгоритмом SPF), что дает ему плюс в быстродействии: как только протокол определяет, что основной маршрут (через successor) недоступен, он сразу переключается на запасной. Для того, чтобы роутер мог стать feasible successor для маршрута, его AD должно быть меньше FD successor’а этого маршрута (вот зачем нам нужно знать AD). Это правило применяется для того, чтобы избежать колец маршрутизации.

Предыдущий абзац взорвал мозг? Материал трудный, поэтому еще раз на примере. У нас есть вот такая сеть:

С точки зрения R1, R2 является Successor’ом для подсети 192.168.2.0/24. Чтобы стать FS для этой подсети, R4 требуется, чтобы его AD была меньше FD для этого маршрута. FD у нас ((10000000/1544)256)+(2100_256) =2195456, AD у R4 (с его точки зрения это FD, т.е. сколько ему стоит добраться до этой сети) = ((10000000/100000)_256)+(100_256)=51200. Все сходится, AD у R4 меньше, чем FD маршрута, он становится FS. тут мозг такой и говорит: “БДЫЩЬ”_. Теперь смотрим на R3- он анонсирует свою сеть 192.168.1.0/24 соседу R1, который, в свою очередь, рассказывает о ней своим соседям R2 и R4. R4 не в курсе, что R2 знает об этой подсети, и решает ему рассказать. R2 передает информацию о том, что он имеет доступ через R4 к подсети 192.168.1.0/24 дальше, на R1. R1 строго смотрит на FD маршрута и AD, которой хвастается R2 (которая, как легко понять по схеме, будет явно больше FD, так как включает и его тоже) и прогоняет его, чтобы не лез со всякими глупостями. Такая ситуация довольно маловероятна, но может иметь место при определенном стечении обстоятельств, например, при отключении механизма “расщепления горизонта” (split-horizon). А теперь к более вероятной ситуации: представим, что R4 подключен к сети 192.168.2.0/24 не через FastEthernet, а через модем на 56k (задержка для dialup составляет 20000 usec), соответственно, добраться ему стоит ((10000000/56)_256)+(2000_256)= 46226176. Это больше, чем FD для этого маршрута, поэтому R4 не станет Feasible Successor’ом. Но это не значит, что EIGRP вообще не будет использовать данный маршрут. Просто переключение на него займет больше времени (подробнее об этом дальше).

Соседство

Роутеры не разговаривают о маршрутах с кем попало — прежде чем начать обмениваться информацией, они должны установить отношения соседства. После включения процесса командой router eigrp с указанием номера автономной системы, мы, командой network говорим, какие интерфейсы будут участвовать и одновременно, информацию о каких сетях мы желаем распространять. Незамедлительно, через эти интерфейсы начинают рассылаться hello-пакеты на мультикаст- адрес 224.0.0.10 (по умолчанию каждые 5 секунд для ethernet). Все маршрутизаторы с включенным EIGRP получают эти пакеты, далее каждый маршрутизатор-получатель делает следующее: — сверяет адрес отправителя hello-пакета, с адресом интерфейса, из которого получен пакет, и удостоверяется, что они из одной подсети — сверяет значения полученных из пакета K-коэффициентов (проще говоря, какие переменные используются в подсчете метрики) со своими. Понятно, что если они различаются, то метрики для маршрутов будут считаться по разным правилам, что недопустимо — проверяет номер автономной системы — опционально: если настроена аутентификация, проверяет соответствие ее типа и ключей.

Если получателя все устраивает, он добавляет отправителя в список своих соседей, и посылает ему (уже юникастом) update-пакет, в котором содержится список всех известных ему маршрутов (aka full-update). Отправитель, получив такой пакет, в свою очередь, делает то же самое. Для обмена маршрутами EIGRP использует Reliable Transport Protocol (RTP, не путать с Real-time Transport Protocol, который используется в ip-телефонии), который подразумевает подтверждение о доставке, поэтому каждый из роутеров, получив update- пакет, отвечает ack -пакетом (сокращение от acknowledgement- подтверждение). Итак, отношение соседства установлены, роутеры узнали друг у друга исчерпывающую информацию о маршрутах, что дальше? Дальше они будут продолжать посылать мультикаст hello-пакеты в подтверждение того, что они на связи, а в случае изменения топологии- update-пакеты, содержащие сведения только об изменениях (partial update).

Теперь вернемся к предыдущей схеме с модемом.

R2 по каким-то причинам потерял связь с 192.168.2.0/24. До этой подсети у него нет запасных маршрутов (т.е. отсутствует FS). Как всякий ответственный роутер с EIGRP, он хочет восстановить связь. Для этого он начинает рассылать специальные сообщения (query- пакеты) всем своим соседям, которые, в свою очередь, не находя нужного маршрута у себя, расспрашивают всех своих соседей, и так далее. Когда волна запросов докатывается до R4, он говорит “погодите-ка, у меня есть маршрут к этой подсети! Плохонький, но хоть что-то. Все про него забыли, а я-то помню”. Все это он упаковывает в reply-пакет и отправляет соседу, от которого получил запрос (query), и дальше по цепочке. Понятное дело, это все занимает больше времени, чем просто переключение на Feasible Successor, но, в итоге, мы получаем связь с подсетью.

История, леденящая кровь сетевого инженера. 3 минуты даунтайма это не шутки. Как мы можем избежать инфаркта этой ситуации? Выхода два: суммирование маршрутов и так называемая stub-конфигурация.

Вообще говоря, есть еще один выход, и он называется фильтрация маршрутов (route filtering). Но это настолько объемная тема, что можно отдельную статью под нее писать, а у нас и так уже пол-книги получилось в этот раз. Поэтому на ваше усмотрение.

Второй вариант- stub- конфигурация. Образно говоря, stub означает “конец пути”, “тупик” в EIGRP, т.е., чтобы попасть в какую-то подсеть, не подключенную напрямую к такому роутеру, придется идти назад. Роутер, сконфигурированный, как stub, не будет пересылать трафик между подсетями, которые ему стали известны от EIGRP (проще говоря, которые в show ip route помечены буквой D). Кроме того, его соседи не будут отправлять ему query-пакеты. Самый распространенный случай применения- hub-and-spoke топологии, особенно с избыточными линками. Возьмем такую сеть: слева- филиалы, справа- основной сайт, главный офис и т.п. Для отказоустойчивости избыточные линки. Запущен EIGRP с дефолтными настройками.

А теперь “внимание, вопрос”: что будет, если R1 потеряет связь с R4, а R5 потеряет LAN? Трафик из подсети R1 в подсеть главного офиса будет идти по маршруту R1->R5->R2(или R3)->R4. Будет это эффективно? Нет. Будет страдать не только подсеть за R1, но и подсеть за R2 (или R3), из-за увеличения объемов трафика и его последствий. Вот для таких-то ситуаций и придуман stub. За роутерами в филиалах нет других роутеров, которые вели бы в другие подсети, это “конец дороги”, дальше только назад. Поэтому мы с легким сердцем можем сконфигурировать их как stub’ы, что, во-первых, избавит нас от проблемы с “кривым маршрутом”, изложенной чуть выше, а во-вторых, от флуда query-пакетов в случае потери маршрута.

Существуют различные режимы работы stub-роутера, задаются они командой eigrp stub:

R1(config)#router eigrp 1 R1(config-router)#eigrp stub? connected Do advertise connected routes leak-map Allow dynamic prefixes based on the leak-map receive-only Set IP-EIGRP as receive only neighbor redistributed Do advertise redistributed routes static Do advertise static routes summary Do advertise summary routes

По умолчанию, если просто дать команду eigrp stub, включаются режимы сonnected и summary. Интерес представляет режим receive-only, в котором роутер не анонсирует никаких сетей, только слушает, что ему говорят соседи (в RIP есть команда passive interface, которая делает то же самое, но в EIGRP она полностью отключает протокол на выбранном интерфейсе, что не позволяет установить соседство).

Важные моменты в теории EIGRP, не попавшие в статью:

А сейчас опасный момент: может, вы уже обратили внимание и насторожились, прочитав момент про эту веерную рассылку. Падение одного интерфейса вызывает нечто похожее на широковещательный шторм в сети (не в таких масштабах, конечно, но все-таки), причем чем больше в ней роутеров, тем больше ресурсов потратится на все эти запросы-ответы. Но это еще пол-беды. Возможна ситуация и похуже: представим, что роутеры, изображенные на картинке- это только часть большой и распределенной сети, т.е. некоторые могут находится за много тысяч километров от нашего R2, на плохих каналах и прочее. Так вот, беда в том, что, послав query соседу, роутер обязан дождаться от него reply. Неважно, что в ответе- но он должен прийти. Даже если роутер уже получил положительный ответ, как в нашем случае, он не может поставить этот маршрут в работу, пока не дождется ответа на все свои запросы. А запросы-то, может, еще где-нибудь на Аляске бродят. Такое состояние маршрута называется stuck-in-active. Тут нам нужно познакомится с терминами, отражающими состояние маршрута в EIGRP: active\passive route. Обычно они вводят в заблуждение. Здравый смысл подсказывает, что active значит маршрут “активен”, включен, работает. Однако тут все наоборот: passive это “все хорошо”, а состояние active означает, что данная подсеть недоступна, и маршрутизатор находится в активном поиске другого маршрута, рассылая query и ожидая reply. Так вот, состояние stuck-in-active (застрял в активном состоянии) может продолжатся до 3 минут! По истечение этого срока, роутер обрывает отношения соседства с тем соседом, от которого он не может дождаться ответа, и может использовать новый маршрут через R4.

Как мы уже упоминали, в EIGRP суммирование маршрутов можно проводить на любом роутере. Для иллюстрации, представим, что к нашему многострадальному R2 подключены подсети от 192.168.0.0/24 до 192.168.7.0/24, что очень удобненько суммируется в 192.168.0.0/21 (вспоминаем ). Роутер анонсирует этот суммарный маршрут, и все остальные знают: если адрес назначения начинается на 192.168.0-7, то это к нему. Что будет происходить, если одна из подсетей пропадет? Роутер будет рассылать query-пакеты с адресом этой сети (конкретным, например, 192.168.5.0/24), но соседи, вместо того, чтобы уже от своего имени продолжить порочную рассылку, будут сразу в ответ слать отрезвляющие реплаи, мол, это твоя подсеть, ты и разбирайся.

В EIGRP можно настроить соседей

Концепция

Подробно о проблеме
binary math
аутентификацию
graceful shutdown
Балансировка нагрузки
не все так просто