Сети Для Самых Маленьких
  • Сети для самых маленьких
  • 0. Планирование
    • 0. Документация сети
    • 1. Схемы сети
    • 2. IP-план
    • 3. Список VLAN
    • 4. План подключения оборудования по портам
    • 5. Заключение
  • 1. Подключение к оборудованию cisco
    • 0. Среда
    • 1. Способы подключения
    • 2. Управление по консоли
    • 3. Первичная настройка
    • 4. Настройка доступа
    • 5. Сброс пароля
  • 2. Коммутация
    • Теория
      • СКС, ЛВС, LAN
      • IP-адресация
      • Широковещательный домен
      • OSI
      • Путь пакета
      • VLAN
      • FAQ
    • Практика
      • Порты доступа (access)
      • Транковые порты (trunk)
      • Сеть управления и первичная настройка
      • Резюме
  • 3. Статическая маршрутизация
    • InterVlan Routing
    • Планирование расширения
    • Принципы маршрутизации
    • Настройка
    • Дополнительно
    • Материалы выпуска
  • 4. STP
    • Широковещательный шторм
    • STP
    • RSTP
    • MSTP
    • Агрегация каналов
    • Port security
    • Практика
    • Материалы выпуска
  • 5. ACL и NAT
    • Access Control List
      • Практика
    • NAT
      • Практика
    • Материалы выпуска
    • Бонусы
    • Спасибы
  • 6. Динамическая маршрутизация
    • Теория протоколов динамической маршрутизации
    • OSPF
      • Теория
      • Теория-2
      • Практика OSPF
      • Задача 1
      • Практика. Продолжение
      • Задача 2
      • Задача 3
    • EIGRP
      • Теория
      • Практика
      • Задача 4
    • Настройка передачи маршрутов между различными протоколами
    • Задача 5
    • Маршрут по умолчанию
    • Задача 6
    • Полезные команды для траблшутинга
    • Задача 7
    • Материалы
    • Полезные ссылки
  • 7. VPN
    • Введение в VPN
    • GRE
      • Абстрактная топология
      • Настройка
      • Механизм работы протокола
      • Итого
    • IPSec
      • Теория
        • Security Association
        • Трансформ-сет
      • Режимы работы IPSec
        • Туннельный режим работы IPSec
        • Практика
          • Настройка на локальной стороне
          • Настройка на обратной стороне
          • Настройка. Завершение
        • Задача 1
        • Теория
        • Задача 2
        • Транспортный режим работы IPSec
        • Задача 3
    • GRE over IPSec
      • Практика
      • Теория
      • Задача 4
      • Задача 5
    • IPSec VTI
    • DMVPN
      • Теория и практика DMVPN
      • OSPF
        • Практика
        • Теория
      • IPSec
      • NAT-Traversal
      • Задача 6
    • TShoot IPSec
    • MTU
    • Материалы выпуска
    • Полезные ссылки
  • 8. BGP и IP SLA
    • Автономные системы
    • PI и PA адреса
    • BGP
      • Теория
      • Установление BGP-сессии и процедура обмена маршрутами
      • Настройка BGP и практика
        • Настройка BGP и практика
        • Задача 1
        • Full View и Default Route
        • Задача 2
        • Looking Glass и другие инструменты
        • Control Plane и Data Plane
        • Выбор маршрута
        • Задача 3
      • Управление маршрутами
        • AS-Path ACL
        • Prefix List
        • Route Map
        • Задача 4
      • Балансировка и распределение нагрузки
        • Балансировка нагрузки
        • Задача 5
        • Распределение нагрузки
          • Исходящий
          • Задача 6
          • Входящий
        • AS-Path Prepend
        • MED
        • Анонс разных префиксов через разных ISP
        • BGP Community
        • Задача 7
        • Общая таблица по видам балансировки и распределения нагрузки
    • PBR
      • Теория
      • PBR
      • Практика
      • Задача 8
    • IP SLA
      • Настройка
      • Задача 9
      • Задача 10
    • Полезные ссылки
  • 8.1 IBGP
    • IBGP
    • Различия IBGP и EBGP
    • Проблема Эн квадрат
      • Route Reflector
        • Правила работы RR
        • Практика RR
          • Проблема резервирования
      • Конфедерации
    • Атрибуты BGP
      • Хорошо известные обязательные (Well-known Mandatory)
      • Хорошо известные необязательные (Well-known Discretionary)
      • Опциональные передаваемые/транзитивные (Optional Transitive)
      • Опциональные непередаваемые/нетранзитивные (Optional Non-transitive)
      • Community
        • Теория Community
        • Задача 7
        • Практика Community
        • Задача 8
        • Задача 9
      • Задача 6
    • Материалы выпуска
    • Задача 1
    • Задача 2
    • Практика
      • EBGP
      • iBGP
      • iBGP
      • Задача 3
      • Настройка внутренней маршрутизации. OSPF
      • Настраиваем BGP
      • Задача 4
      • Что мы можем улучшить?
      • Задача 5
      • Задача 6
      • Задача 7
      • Задача 8
      • Задача 9
    • Послесловие
  • 9. Multicast
    • Общее понимание Multicast
      • Пример I
      • Пример II
    • IGMP
      • Теория IGMP
      • Querier
      • Ещё пара слов о других версиях IGMP
      • Повторим ещё раз
      • И ещё раз
    • PIM
      • PIM Dense Mode
      • PIM Sparse Mode
      • Чтобы разобраться с тем, что такое PIM, обратимся к сети гораздо более сложной
      • Разбор полётов
        • RP
        • Бритва Оккама или отключение ненужных ветвей
        • SPT Switchover — переключение RPT-SPT
        • Задача 1
        • Задача 2
      • DR, Assert, Forwarder
      • Выбор RP
      • Завершение
    • SSM
    • BIDIR PIM
    • Мультикаст на канальном уровне
      • Мультикастовые MAC-адреса
      • IGMP Snooping
      • Задача 3
      • IGMP Snooping Proxy
      • Multicast VLAN Replication
    • Заключение
  • 10. Базовый MPLS
    • Что не так с IP?
    • Заголовок MPLS
    • Пространство меток
    • Что такое MPLS
    • Передача трафика в сети MPLS
    • Терминология
    • Распространение меток
      • Методы распространение меток
        • DU против DoD
        • Ordered Control против Independent Control
        • Liberal Label Retention Mode против Conservative Label Retention Mode
        • PHP
      • Протоколы распространения меток
        • LDP
          • Практика
        • Применение чистого MPLS в связке с BGP
        • RSVP-TE
          • Практика
    • ВиО
    • Полезные ссылки
    • Спасибы
  • 11. MPLS L3VPN
    • VRF, VPN-Instance, Routing Instance
      • VRF-Lite
    • MPLS L3VPN
      • Data Plane или передача пользовательских данных
      • Роль меток MPLS
        • Транспортная метка
        • Сервисная метка
      • Терминология
      • Control Plane или передача служебной (маршрутной) информации
      • Протоколы маршрутизации
      • MBGP
        • Route Distinguisher
        • Route Target)
    • Практика
      • VRF-Lite
      • MPLS L3VPN
      • Взаимодействие между VPN
    • Трассировка в MPLS L3VPN
    • Доступ в Интернет
      • NAT на CE
        • Практика
        • Теория
        • Повторим шаги настройки
      • VRF Aware NAT
        • Практика
        • Теория
      • Common Services
    • ВиО
    • Полезные ссылки
  • 12. MPLS L2VPN
    • О технологиях L2VPN
    • VPWS
      • Data Plane
      • Control Plane
      • Практика
      • Теория
      • Виды VPWS
    • VPLS
      • Data Plane
      • Control Plane
      • VPLS Martini Mode (targeted LDP)
        • Практика
        • Теория
      • VPLS Kompella Mode (BGP)
        • Обнаружение соседей или Auto-Discovery
        • Передача префиксов
        • Распределение меток и механизм Label Block
        • Практика
        • Теория
      • Martini vs. Kompella
      • Иерархический VPLS (H-VPLS)
        • Практика H-VPLS
        • Теория
    • Проблемы VPLS
    • Полезные ссылки
    • Спасибы
  • 12.1. MPLS EVPN
    • Вспоминаем VPLS
    • Базовая часть технологии EVPN
    • Лаборатория для тестов и конфигурации
    • Маршруты EVPN
      • Маршрут типа 3 (Inclusive Multicast Ethernet Tag Route)
      • Маршрут типа 2 (MAC/IP Advertisement Route)
        • Изучение MAC-адресов
      • Маршрут типа 1 (Ethernet Auto-Discovery Route)
        • Автоматический поиск multihomed PE и ESI label
        • MAC Mass Withdrawal
        • Aliasing label
      • Маршрут типа 4 (Ethernet Segment Route)
        • Механизм выбора DF
    • L3-функционал в EVPN
      • IRB synchronisation
      • Маршрутизация между bridge-доменами
      • Выход в другие VRF и внешние сети
    • Зачем это всё-таки нужно?
    • Заключение
  • 12.2. EVPN Multihoming
    • Практический пример
    • Проблемы Multihoming-га.
    • Что такое DF и зачем он нужен?
    • Зачем нужен маршрут типа 1 per-ESI?
    • Зачем нам маршрут типа 1, сгенерированный per-EVI?
    • А нужен ли нам MC-LAG в EVPN?
    • Заключение
  • 13. MPLS Traffic Engineering
    • Предпосылки появления MPLS TE
    • Принципы работы MPLS Traffic Engineering
    • Способы направления трафика в TE-туннель
    • Способы управления туннелями
  • 14. Packet Life
    • 0. Коротко о судьбе и пути пакета
    • 1. Уровни и плоскости
      • Forwarding/Data Plane
      • Control Plane
      • Management Plane
      • Краткий итог
    • 2. История способов обработки трафика
      • Что с тобой не так, IP?!
      • О дивный новый мир
    • 3. Типов-чипов
      • CPU — Central Processing Unit
      • RAM — Random Access Memory
      • CAM — Content-Addressable Memory
      • TCAM — Ternary Content-Addressable Memory
      • ASIC — Application Specific Integrated Circuit
      • Programmable ASIC
      • FPGA — Field Programmable Gate Array
      • NP — Network Processor
    • 4. Аппаратная архитектура коммутирующего устройства
      • Общая шина
      • Управляющий модуль
      • Интерфейсный модуль или линейная карта
        • PIC — Physical Interface Card
        • FE — Forwarding Engine
        • QoS или TM — Traffic Management
        • SerDes — Serializer, Deserializer
        • Распределённая плоскость управления (Distributed Control Plane)
      • Фабрика коммутации
    • 5. Путешествие длиною в жизнь
      • Транзитные пакеты
      • Локальные пакеты
    • Заключение
    • Спасибы
  • 15. QoS
    • 0. Чем определяется QoS?
      • Потери
      • Задержки
      • Джиттер
      • Неупорядоченная доставка
      • Полоса пропускания
    • 1. Три модели обеспечения QoS
      • Best Effort (BE)
      • IntServ
      • DiffServ
    • 2. Механизмы DiffServ
    • 3. Классификация и маркировка
      • Behavior Aggregate
      • Interface-based
      • Multi-Field
      • Маркировка внутри устройства
      • Рекомендации IETF (категории трафика, классы сервиса и модели поведения)
      • Короткий итог по классификации
    • 4. Очереди
    • 5. Предотвращение перегрузок
      • Tail Drop и Head Drop
      • RED — Random Early Detection
      • WRED — Weighted Random Early Detection
    • 6. Управление перегрузками
      • FIFO — First In, First Out
      • PQ — Priority Queuing
      • FQ - Fair Queuing
      • RR — Round-Robin
      • Короткий итог про механизмы диспетчеризации
    • 7. Ограничение скорости
      • Traffic Policing
      • Traffic Shaping
      • Шейпинг против полисинга
      • Практика Полисинг и шейпинг
      • Механизмы Leaky Bucket и Token Bucket
        • Алгоритм Leaky bucket
        • Алгоритм Token Bucket
      • Короткий итог по ограничению скорости
    • 8. Аппаратная реализация QoS
    • Полезные ссылки
    • Спасибы
  • Инструкция для контрибьютеров
Powered by GitBook
On this page
  • Практика RSVP TE
  • Explicit Path
  1. 10. Базовый MPLS
  2. Распространение меток
  3. Протоколы распространения меток
  4. RSVP-TE

Практика

PreviousRSVP-TENextВиО

Last updated 6 years ago

Практика RSVP TE

Команда mpls ip была нам нужна для работы LDP. Теперь в ней больше нет нужды — удаляем её и начинаем с . Теперь нам понадобится mpls traffic-eng tunnels. Она глобально включает поддержку TE-туннелей и собственно RSVP TE:

R1(config)#mpls traffic-eng tunnels

Также необходимо включить то же самое на интерфейсах:

R1(config)# interface FastEthernet 0/0
R1(config-if)# mpls traffic-eng tunnels 
R1(config)# interface FastEthernet 0/1
R1(config-if)# mpls traffic-eng tunnels

Пока ничего не происходит. RSVP молчит.

Сейчас мы расширим IGP на передачу данных TE. В своём примере мы используем ISIS:

R1(config)#router isis 
R1(config-router)# metric-style wide
R1(config-router)# mpls traffic-eng router-id Loopback0
R1(config-router)# mpls traffic-eng level-2

Включить режим расширенных меток — обязательно, иначе TE не заработает. Задать LSR-ID, как мы это делали и в LDP, Необходимо задать конкретный уровень ISIS, иначе, TE не заработает.

Если вдруг вы используете OSPF

R1(config-router)# mpls traffic-eng area 0 R1(config-router)# mpls traffic-eng router-id Loopback0

Эти шаги нужно повторить на других маршрутизаторах.

Сразу после этого ISIS начинает обмениваться информацией о TE:

Как видите передаётся информация о LSR-ID, расширенная информация о соседях (которые поддерживают TE), расширенная информация о интерфейсах.

На этом этапе сформирована TED.

Саму топологию вы можете посмотреть в ISIS: #show isis database verbose

RSVP пока молчит.

Теперь настроим TE-туннель.

R1(config)# interface Tunnel1
R1(config-if)# ip unnumbered Loopback0
R1(config-if)# tunnel destination 6.6.6.6
R1(config-if)# tunnel mode mpls traffic-eng
R1(config-if)# tunnel mpls traffic-eng path-option 10 dynamic

Туннельные интерфейсы — вещь очень универсальная на маршрутизаторах. Они могут использоваться для L2TP, GRE, IPIP и, как видите, для MPLS TE. ip unnumbered Loopback0 означает, что отправной точкой туннеля должен быть адрес интерфейса Loopback0. tunnel destination 6.6.6.6 — универсальная для туннельных интерфейсов команда, определяет точку терминации, окончания туннеля. tunnel mode mpls traffic-eng — задаёт тип. Именно здесь и определяется алгоритм работы туннеля, как его строить. tunnel mpls traffic-eng path-option 10 dynamic — эта команда позволяет CSPF построить путь динамически, без задания промежуточных узлов.

Если до этого вы всё сделали правильно, то туннельный интерфейс должен подняться:

%LINEPROTO-5-UPDOWN: Line protocol on Interface Tunnel1, changed state to up

Что при этом произошло? R1 отправил Path.

Нас в нём интересуют адрес назначения, объекты ERO и Label Request. Адрес назначения — 6.6.6.6, как и настроили в туннеле. Explicit Route: 10.0.12.2 -> 10.0.25.2 -> 10.0.25.5 -> 10.0.56.5 -> 10.0.56.6. То есть в нём прописан линковый адрес выходного интерфейса и линковый же адрес следующего узла. Каждый LSR таким образом точно знает, в какой интерфейс нужно отправить Path. В данном ERO нет 10.0.12.1, потому что R1 уже удалил его перед отправкой. Факт наличия Label Request говорит о том, что LSR должен выделить метку для данного FEC. При этом он никак не отвечает на этот Path пока — он посылает обновлённый дальше. Resv ниже посылается после того, как пришёл Resv от нижестоящего LSR.

То же самое происходит на R5:

Так Path доходит до R6. Тот отправляет назад RSPV Resv:

На дампе хорошо видно, что Resv передаётся от узла к узлу. В объекте Label передаётся метка, выделенная данному FEC.

Тут, как видите, уже метка нормальная — 16.

Explicit Path

Давайте теперь попробуем поменять путь — трафик должен пройти через R1-R3-R4-R5-R6. Проще простого: нужно всего-лишь настроить explicit-path:

R1(config)# ip explicit-path name R1-to-R6-primary 
R1(cfg-ip-expl-path)# next-address 10.0.13.3 
R1(cfg-ip-expl-path)# next-address 10.0.34.4 
R1(cfg-ip-expl-path)# next-address 10.0.45.5 
R1(cfg-ip-expl-path)# next-address 10.0.56.6

И применить его на туннельный интерфейс:

R1(config)# Interface Tunnel 1
R1(config-if)# tunnel mpls traffic-eng path-option 5 explicit name R1-to-R6-primary

Заметьте, что приоритет мы ему поставили выше, чем предыдущему правилу — 5 против 10. То есть сначала будет использоваться explicit-path, а если с ним какие-то проблемы, тогда R1 попытается построить LSP динамически (уж как-нибудь).

Конфигурация туннеля выглядит сейчас так:

interface Tunnel1
ip unnumbered Loopback0
tunnel destination 6.6.6.6
tunnel mode mpls traffic-eng
tunnel mpls traffic-eng path-option 5 explicit name R1-to-R6-primary
tunnel mpls traffic-eng path-option 10 dynamic
no routing dynamic

А так выглядит сообщение Path, несущее в себе новый ERO:

Чтобы просмотреть информацию о туннеле, выполните команду show mpls traffic-eng tunnels:

Можно это посмотреть и на промежуточном:

Как LSP формируется при наличии требований по ресурсам, что такое Loose и Strict, FRR и make before break, Affinity и прочее, читайте через пару выпусков в статье про MPLS TE.

Дамп снят на линии R1-R2.

Дамп снят на линии R2-R5.

Дамп снят на линии R2-R5.

Дамп снят на линии R5-R6.

Обратите внимание, что R6 присвоил метку 0 — Expliсit Null. Вообще это нормальная ситуация — делается это для того, чтобы метка MPLS между R5 и R6 была (для обработки пакета согласно значению в поле EXP, например), но R6 сразу же понял, что метку 0 надо сбрасывать и обрабатывать то, что под ней, а не производил поиск в таблице меток. Проблема в том, что в пакете меток может быть больше одной (например, для VPN), но согласно (да и мы раньше об этом говорили) R5 должен удалить весь стек меток, сколько бы их ни было, и передать пакет с одной меткой 0. При этом, конечно, всё сломается. На самом деле, требование того, чтобы метка 0 была единственной в стеке, выглядит неоправданным — применений этому нет. Поэтому в это ограничение убрали. Теперь метка 0 может быть не единственной в стеке. Интересная особенность — PHP. Несмотря на то, что для этого есть специальная метка — 3 — LSR совершит PHP даже при получении метки 0. Подробнее у того же .

R5 передаёт Resv на R2, а R2 на R1. Дамп снят на линии R1-R2.

Как бы внимательно вы ни приглядывались к Resv, вы не увидите там пути, по которому нужно пройти, а список узлов должен быть тем же самым, чтобы успешно раздать метки и построить LSP. Как это решается? Подробности задачи .

.

RFC 3032
RFC 4182
Пепельняка
Файл итоговой конфигурации RSVP-TE
чистого листа
Задача № 5
тут