Сети Для Самых Маленьких
  • Сети для самых маленьких
  • 0. Планирование
    • 0. Документация сети
    • 1. Схемы сети
    • 2. IP-план
    • 3. Список VLAN
    • 4. План подключения оборудования по портам
    • 5. Заключение
  • 1. Подключение к оборудованию cisco
    • 0. Среда
    • 1. Способы подключения
    • 2. Управление по консоли
    • 3. Первичная настройка
    • 4. Настройка доступа
    • 5. Сброс пароля
  • 2. Коммутация
    • Теория
      • СКС, ЛВС, LAN
      • IP-адресация
      • Широковещательный домен
      • OSI
      • Путь пакета
      • VLAN
      • FAQ
    • Практика
      • Порты доступа (access)
      • Транковые порты (trunk)
      • Сеть управления и первичная настройка
      • Резюме
  • 3. Статическая маршрутизация
    • InterVlan Routing
    • Планирование расширения
    • Принципы маршрутизации
    • Настройка
    • Дополнительно
    • Материалы выпуска
  • 4. STP
    • Широковещательный шторм
    • STP
    • RSTP
    • MSTP
    • Агрегация каналов
    • Port security
    • Практика
    • Материалы выпуска
  • 5. ACL и NAT
    • Access Control List
      • Практика
    • NAT
      • Практика
    • Материалы выпуска
    • Бонусы
    • Спасибы
  • 6. Динамическая маршрутизация
    • Теория протоколов динамической маршрутизации
    • OSPF
      • Теория
      • Теория-2
      • Практика OSPF
      • Задача 1
      • Практика. Продолжение
      • Задача 2
      • Задача 3
    • EIGRP
      • Теория
      • Практика
      • Задача 4
    • Настройка передачи маршрутов между различными протоколами
    • Задача 5
    • Маршрут по умолчанию
    • Задача 6
    • Полезные команды для траблшутинга
    • Задача 7
    • Материалы
    • Полезные ссылки
  • 7. VPN
    • Введение в VPN
    • GRE
      • Абстрактная топология
      • Настройка
      • Механизм работы протокола
      • Итого
    • IPSec
      • Теория
        • Security Association
        • Трансформ-сет
      • Режимы работы IPSec
        • Туннельный режим работы IPSec
        • Практика
          • Настройка на локальной стороне
          • Настройка на обратной стороне
          • Настройка. Завершение
        • Задача 1
        • Теория
        • Задача 2
        • Транспортный режим работы IPSec
        • Задача 3
    • GRE over IPSec
      • Практика
      • Теория
      • Задача 4
      • Задача 5
    • IPSec VTI
    • DMVPN
      • Теория и практика DMVPN
      • OSPF
        • Практика
        • Теория
      • IPSec
      • NAT-Traversal
      • Задача 6
    • TShoot IPSec
    • MTU
    • Материалы выпуска
    • Полезные ссылки
  • 8. BGP и IP SLA
    • Автономные системы
    • PI и PA адреса
    • BGP
      • Теория
      • Установление BGP-сессии и процедура обмена маршрутами
      • Настройка BGP и практика
        • Настройка BGP и практика
        • Задача 1
        • Full View и Default Route
        • Задача 2
        • Looking Glass и другие инструменты
        • Control Plane и Data Plane
        • Выбор маршрута
        • Задача 3
      • Управление маршрутами
        • AS-Path ACL
        • Prefix List
        • Route Map
        • Задача 4
      • Балансировка и распределение нагрузки
        • Балансировка нагрузки
        • Задача 5
        • Распределение нагрузки
          • Исходящий
          • Задача 6
          • Входящий
        • AS-Path Prepend
        • MED
        • Анонс разных префиксов через разных ISP
        • BGP Community
        • Задача 7
        • Общая таблица по видам балансировки и распределения нагрузки
    • PBR
      • Теория
      • PBR
      • Практика
      • Задача 8
    • IP SLA
      • Настройка
      • Задача 9
      • Задача 10
    • Полезные ссылки
  • 8.1 IBGP
    • IBGP
    • Различия IBGP и EBGP
    • Проблема Эн квадрат
      • Route Reflector
        • Правила работы RR
        • Практика RR
          • Проблема резервирования
      • Конфедерации
    • Атрибуты BGP
      • Хорошо известные обязательные (Well-known Mandatory)
      • Хорошо известные необязательные (Well-known Discretionary)
      • Опциональные передаваемые/транзитивные (Optional Transitive)
      • Опциональные непередаваемые/нетранзитивные (Optional Non-transitive)
      • Community
        • Теория Community
        • Задача 7
        • Практика Community
        • Задача 8
        • Задача 9
      • Задача 6
    • Материалы выпуска
    • Задача 1
    • Задача 2
    • Практика
      • EBGP
      • iBGP
      • iBGP
      • Задача 3
      • Настройка внутренней маршрутизации. OSPF
      • Настраиваем BGP
      • Задача 4
      • Что мы можем улучшить?
      • Задача 5
      • Задача 6
      • Задача 7
      • Задача 8
      • Задача 9
    • Послесловие
  • 9. Multicast
    • Общее понимание Multicast
      • Пример I
      • Пример II
    • IGMP
      • Теория IGMP
      • Querier
      • Ещё пара слов о других версиях IGMP
      • Повторим ещё раз
      • И ещё раз
    • PIM
      • PIM Dense Mode
      • PIM Sparse Mode
      • Чтобы разобраться с тем, что такое PIM, обратимся к сети гораздо более сложной
      • Разбор полётов
        • RP
        • Бритва Оккама или отключение ненужных ветвей
        • SPT Switchover — переключение RPT-SPT
        • Задача 1
        • Задача 2
      • DR, Assert, Forwarder
      • Выбор RP
      • Завершение
    • SSM
    • BIDIR PIM
    • Мультикаст на канальном уровне
      • Мультикастовые MAC-адреса
      • IGMP Snooping
      • Задача 3
      • IGMP Snooping Proxy
      • Multicast VLAN Replication
    • Заключение
  • 10. Базовый MPLS
    • Что не так с IP?
    • Заголовок MPLS
    • Пространство меток
    • Что такое MPLS
    • Передача трафика в сети MPLS
    • Терминология
    • Распространение меток
      • Методы распространение меток
        • DU против DoD
        • Ordered Control против Independent Control
        • Liberal Label Retention Mode против Conservative Label Retention Mode
        • PHP
      • Протоколы распространения меток
        • LDP
          • Практика
        • Применение чистого MPLS в связке с BGP
        • RSVP-TE
          • Практика
    • ВиО
    • Полезные ссылки
    • Спасибы
  • 11. MPLS L3VPN
    • VRF, VPN-Instance, Routing Instance
      • VRF-Lite
    • MPLS L3VPN
      • Data Plane или передача пользовательских данных
      • Роль меток MPLS
        • Транспортная метка
        • Сервисная метка
      • Терминология
      • Control Plane или передача служебной (маршрутной) информации
      • Протоколы маршрутизации
      • MBGP
        • Route Distinguisher
        • Route Target)
    • Практика
      • VRF-Lite
      • MPLS L3VPN
      • Взаимодействие между VPN
    • Трассировка в MPLS L3VPN
    • Доступ в Интернет
      • NAT на CE
        • Практика
        • Теория
        • Повторим шаги настройки
      • VRF Aware NAT
        • Практика
        • Теория
      • Common Services
    • ВиО
    • Полезные ссылки
  • 12. MPLS L2VPN
    • О технологиях L2VPN
    • VPWS
      • Data Plane
      • Control Plane
      • Практика
      • Теория
      • Виды VPWS
    • VPLS
      • Data Plane
      • Control Plane
      • VPLS Martini Mode (targeted LDP)
        • Практика
        • Теория
      • VPLS Kompella Mode (BGP)
        • Обнаружение соседей или Auto-Discovery
        • Передача префиксов
        • Распределение меток и механизм Label Block
        • Практика
        • Теория
      • Martini vs. Kompella
      • Иерархический VPLS (H-VPLS)
        • Практика H-VPLS
        • Теория
    • Проблемы VPLS
    • Полезные ссылки
    • Спасибы
  • 12.1. MPLS EVPN
    • Вспоминаем VPLS
    • Базовая часть технологии EVPN
    • Лаборатория для тестов и конфигурации
    • Маршруты EVPN
      • Маршрут типа 3 (Inclusive Multicast Ethernet Tag Route)
      • Маршрут типа 2 (MAC/IP Advertisement Route)
        • Изучение MAC-адресов
      • Маршрут типа 1 (Ethernet Auto-Discovery Route)
        • Автоматический поиск multihomed PE и ESI label
        • MAC Mass Withdrawal
        • Aliasing label
      • Маршрут типа 4 (Ethernet Segment Route)
        • Механизм выбора DF
    • L3-функционал в EVPN
      • IRB synchronisation
      • Маршрутизация между bridge-доменами
      • Выход в другие VRF и внешние сети
    • Зачем это всё-таки нужно?
    • Заключение
  • 12.2. EVPN Multihoming
    • Практический пример
    • Проблемы Multihoming-га.
    • Что такое DF и зачем он нужен?
    • Зачем нужен маршрут типа 1 per-ESI?
    • Зачем нам маршрут типа 1, сгенерированный per-EVI?
    • А нужен ли нам MC-LAG в EVPN?
    • Заключение
  • 13. MPLS Traffic Engineering
    • Предпосылки появления MPLS TE
    • Принципы работы MPLS Traffic Engineering
    • Способы направления трафика в TE-туннель
    • Способы управления туннелями
  • 14. Packet Life
    • 0. Коротко о судьбе и пути пакета
    • 1. Уровни и плоскости
      • Forwarding/Data Plane
      • Control Plane
      • Management Plane
      • Краткий итог
    • 2. История способов обработки трафика
      • Что с тобой не так, IP?!
      • О дивный новый мир
    • 3. Типов-чипов
      • CPU — Central Processing Unit
      • RAM — Random Access Memory
      • CAM — Content-Addressable Memory
      • TCAM — Ternary Content-Addressable Memory
      • ASIC — Application Specific Integrated Circuit
      • Programmable ASIC
      • FPGA — Field Programmable Gate Array
      • NP — Network Processor
    • 4. Аппаратная архитектура коммутирующего устройства
      • Общая шина
      • Управляющий модуль
      • Интерфейсный модуль или линейная карта
        • PIC — Physical Interface Card
        • FE — Forwarding Engine
        • QoS или TM — Traffic Management
        • SerDes — Serializer, Deserializer
        • Распределённая плоскость управления (Distributed Control Plane)
      • Фабрика коммутации
    • 5. Путешествие длиною в жизнь
      • Транзитные пакеты
      • Локальные пакеты
    • Заключение
    • Спасибы
  • 15. QoS
    • 0. Чем определяется QoS?
      • Потери
      • Задержки
      • Джиттер
      • Неупорядоченная доставка
      • Полоса пропускания
    • 1. Три модели обеспечения QoS
      • Best Effort (BE)
      • IntServ
      • DiffServ
    • 2. Механизмы DiffServ
    • 3. Классификация и маркировка
      • Behavior Aggregate
      • Interface-based
      • Multi-Field
      • Маркировка внутри устройства
      • Рекомендации IETF (категории трафика, классы сервиса и модели поведения)
      • Короткий итог по классификации
    • 4. Очереди
    • 5. Предотвращение перегрузок
      • Tail Drop и Head Drop
      • RED — Random Early Detection
      • WRED — Weighted Random Early Detection
    • 6. Управление перегрузками
      • FIFO — First In, First Out
      • PQ — Priority Queuing
      • FQ - Fair Queuing
      • RR — Round-Robin
      • Короткий итог про механизмы диспетчеризации
    • 7. Ограничение скорости
      • Traffic Policing
      • Traffic Shaping
      • Шейпинг против полисинга
      • Практика Полисинг и шейпинг
      • Механизмы Leaky Bucket и Token Bucket
        • Алгоритм Leaky bucket
        • Алгоритм Token Bucket
      • Короткий итог по ограничению скорости
    • 8. Аппаратная реализация QoS
    • Полезные ссылки
    • Спасибы
  • Инструкция для контрибьютеров
Powered by GitBook
On this page
  1. 12.1. MPLS EVPN
  2. Маршруты EVPN
  3. Маршрут типа 2 (MAC/IP Advertisement Route)

Изучение MAC-адресов

Теперь посмотрим на MAC-таблицу на PE1:

bormoglotx@RZN-PE-1> show bridge mac-table

MAC flags       (S -static MAC, D -dynamic MAC, L -locally learned, C -Control MAC
    SE -Statistics enabled, NM -Non configured MAC, R -Remote PE MAC)

Routing instance : RZN-VPN-1
 Bridging domain : VLAN-777, VLAN : 777
   MAC                 MAC      Logical          NH      RTR
   address             flags    interface        Index   ID
   aa:bb:cc:00:06:00   D        ge-0/0/2.0
   aa:bb:cc:00:07:00   DC                        1048575 1048575

Колонка flag говорит нам о том, как был изучен данный адрес: MAC-адрес aa:bb:cc:00:06:00 имеет только флаг D, что означает, что этот мак изучен динамически (стандартным способом через data plane) и, так как больше никаких флагов мы не видим, то можем с уверенностью сказать, что данный MAC изучен от локально подключенного CE маршрутизатора. А вот MAC-адрес aa:bb:cc:00:07:00 имеет два флага — DC. Что значит первый флаг, мы уже знаем, а вот флаг С говорит о том, что данный адрес изучен через control plane.

Если мы посмотрим на таблицу MAC-адресов на PE3, то увидим, что все адреса изучены данным PE маршрутизатором через control plane, и нет ни одного локального MAC-адреса:

bormoglotx@RZN-PE-3> show evpn mac-table

MAC flags       (S -static MAC, D -dynamic MAC, L -locally learned, C -Control MAC
    SE -Statistics enabled, NM -Non configured MAC, R -Remote PE MAC)

Routing instance : RZN-VPN-1
 Bridging domain : __RZN-VPN-1__, VLAN : 777
   MAC                 MAC      Logical          NH      RTR
   address             flags    interface        Index   ID
   aa:bb:cc:00:06:00   DC                        1048574 1048574
   aa:bb:cc:00:07:00   DC                        1048575 1048575

Примечание: если вы заметили, в одном случае я использовал команду show bridge mac-table, а во втором show evpn mac-table. Это обусловлено тем, что на разных PE маршрутизаторах routing instance сконфигурированы по-разному — в первом случае virtual-swicth, во втором EVPN.

На PE3 нет ни одного изученного локально MAC-адреса, так как еще не было трафика от CE3. Давайте исправим данную ситуацию, запустив пинг до CE3, и еще раз посмотрим данную таблицу:

RZN-CE1-SW1#ping 10.0.0.3
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.0.0.3, timeout is 2 seconds:
.!!!!
Success rate is 80 percent (4/5), round-trip min/avg/max = 7/10/13 ms
bormoglotx@RZN-PE-3> show evpn mac-table

MAC flags       (S -static MAC, D -dynamic MAC, L -locally learned, C -Control MAC
    SE -Statistics enabled, NM -Non configured MAC, R -Remote PE MAC)

Routing instance : RZN-VPN-1
 Bridging domain : __RZN-VPN-1__, VLAN : 777
   MAC                 MAC      Logical          NH      RTR
   address             flags    interface        Index   ID
   aa:bb:cc:00:05:00   D        ge-0/0/2.777
   aa:bb:cc:00:06:00   DC                        1048574 1048574
   aa:bb:cc:00:07:00   DC                        1048575 1048575

Как видите, на PE3 теперь появился MAC-адрес CE3, изученный через data plane.

Как и у обычного свича, адреса в MAC-таблице EVPN имеют определенный “срок годности”, по умолчанию этот срок равен 300-м секундам. Если в течении данного времени этот MAC был неактивен и не обновлялся, то маршрут удаляется из таблицы. Вроде, все просто — таймер отработал — MAC удалили. Но все не так просто, как кажется. Давайте рассмотрим, как это происходит.

Итак, PE3 изучил MAC-адрес CE3 и отправил его в BGP анонсе остальным PE маршрутизаторам. Предположим, что в течении 300 секунд запись не обновлялась. Тогда PE3 должен удалить данный MAC-адрес из таблицы, что он и делает. Но мы помним, что PE3 отправил всем своим соседям информацию о том, что данный MAC-адрес находится за ним. А вдруг этот хост переехал или вообще уже выключен? Что тогда? Остальные PE маршрутизаторы так и будут слать пакеты для CE3 на PE3, как в черную дыру? Конечно, нет. Дело в том, что если PE маршрутизатор удаляет из таблицы локальный MAC-адрес, то он отправляет BGP Withdrawn сообщение, которое заставляет другие PE маршрутизаторы удалить этот маршрут, а следовательно и MAC-адрес, из своих таблиц. Давайте это проверим.

Но помимо MAC-адреса маршрут MAC/IP Advertisement route может опционально содержать в себе и IP-адрес хоста. Добавим в наш EVPN роутинговый-интерфейс IRB и посмотрим какой маршрут появился:

bormoglotx@RZN-PE-1> show configuration interfaces irb.777
family inet {
    address 10.0.0.254/24;
}
mac 02:00:00:00:00:02;

bormoglotx@RZN-PE-1> show route table RZN-VPN-1.evpn.0 match-prefix *2:62.0.0.1:1::777::02*

RZN-VPN-1.evpn.0: 18 destinations, 18 routes (18 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

2:62.0.0.1:1::777::02:00:00:00:00:02/304
                   *[EVPN/170] 14:17:31
                      Indirect
2:62.0.0.1:1::777::02:00:00:00:00:02::10.0.0.254/304
                   *[EVPN/170] 14:17:31
                      Indirect

Появились два новых маршрута, причем первый это только MAC-адрес irb.777, а вот второй MAC+IP. Mac+IP анонс имеет вид ARP записи, все PE маршрутизаторы, участвующие в одном EVPN-домене, синхронизируют свои ARP записи, что позволяет уменьшить количество флуда широковещательных ARP запросов по сети провайдера.

Теперь посмотрим на маршрут внимательнее:

bormoglotx@RZN-PE-1> show route table RZN-VPN-1.evpn.0 match-prefix *2:62.0.0.1:1::777::02* detail

RZN-VPN-1.evpn.0: 18 destinations, 18 routes (18 active, 0 holddown, 0 hidden)
2:62.0.0.1:1::777::02:00:00:00:00:02/304 (1 entry, 1 announced)
        *EVPN Preference: 170
                Next hop type: Indirect
                Address: 0x940d804
                Next-hop reference count: 7
                Protocol next hop: 62.0.0.1
                Indirect next hop: 0x0 - INH Session ID: 0x0
                State: Active Int Ext
                Age: 14:21:34
                Validation State: unverified
                Task: RZN-VPN-1-evpn
                Announcement bits (1): 1-BGP_RT_Background
                AS path: I
                Communities: evpn-default-gateway
                Route Label: 300144
                ESI: 00:00:00:00:00:00:00:00:00:00

В данном маршруте появилось новое расширенное коммьюнити evpn-default-gateway. Именно так помечаются маршруты, которые являются основным шлюзом для routing-instance. Данный маршрут будет генерироваться для каждого влана отдельно.

Почему генерируются два маршрута? Дело в том, что первый маршрут, в котором указан только MAC-адрес, используется исключительно для свитчинга в bringe-домене, а вот маршрут MAC+IP уже используется для маршрутизации и является по своей сути ARP записью. Забегу чуточку вперед и напишу, что точно так же будут генерироваться маршруты до хостов при движении трафика в другие вланы или во внешнюю сеть (это мы рассмотрим далее при добавлении в схему еще одного влана).

PreviousМаршрут типа 2 (MAC/IP Advertisement Route)NextМаршрут типа 1 (Ethernet Auto-Discovery Route)

Last updated 4 years ago

На первом скрине представлен BGP UPDATE Message, который объявляет MAC-адрес aa:bb:cc:00:07:00 (картинки кликабельны): Спустя 300 секунд, мы видим еще одно BGP UPDATE Message, которое является Withdrawn сообщением, отменяющим маршрут до указанного ранее MAC-адреса: Помимо MAC aging time, у EVPN есть механизм сигнализации о смене MAC-адреса. Когда от CE маршрутизатора PE-ка получает Gratuitous ARP, то генерируется BGP Update, в котором содержится withdrawn сообщение с указанием старого MAC-адреса и анонс нового MAC-адреса.