Access Control List

Итак, что мы имеем сказать по спискам доступа? Вообще-то тема относительно простая и только ленивыми из курса CCNA не скопипащена. Но не разрывать же нам наше удивительное повествование из-за каких то предрассудков?

Виды ACL

Ладно, забудем на время эту лирику. Вообще говоря, списки доступа бывают разными:

  • Стандартные

  • Расширенные

  • Динамические

  • Рефлексивные

  • Повременные

Мы своё внимание остановим сегодня на первых двух, а более подробно обо всех вы можете прочитать у циски.

Входящий и исходящий трафик

Стандартный список доступа проверяет только адрес отправителя. Расширенный- адрес отправителя, адрес получателя, а также порт. Стандартные ACL рекомендуется ставить как можно ближе к получателю (чтобы не порезать больше, чем нужно), а расширенные- ближе к отправителю (чтобы как можно раньше дропнуть нежелательный трафик).

Маска и обратная маска

До сих пор мы без объяснения давали странный параметр вида 0.0.255.255, подозрительно напоминающий маску подсети. Немного сложная для понимания, но именно она — обратная маска — используется для определения хостов, которые подпадут под правило. Чтобы понять что такое обратная маска, вы должны знать, что такое обычная.Начнём с самого простого примера.

Обычная сеть на 256 адресов: 172.16.5.0/24, например. Что означает эта запись? А означает она ровно следующее

IP-адрес. Десятичная запись

172

16

5

0

IP-адрес. Двоичная запись

10101100

00010000

00000101

00000000

Маска подсети. Двоичная запись

11111111

11111111

11111111

00000000

Маска подсети. Десятичная запись

255

255

255

0

IP-адрес — это параметр длиною 32 бита, поделенный на 4 части, который вы привыкли видеть в десятичной форме. Маска подсети также имеет длину 32 бита — она фактически шаблон, трафарет, по которому определяется принадлежность адреса подсети. Там, где в маске стоят единицы, значение меняться не может, то есть часть 172.16.5 совершенно неизменна и она будет одинакова для всех хостов этой подсети, а вот та, где нули — варьируется. То есть во взятом нами примере 172.16.5.0/24 — это адрес сети, а хосты будут 172.16.5.1-172.16.5.254 (последний 255 — широковещательный), потому что 00000001 — это 1, а 11111110 — 254 (речь о последнем октете адреса). /24 означает, что длина маски 24 бита, то есть у нас идёт 24 единицы — неизменная часть и 8 нулей. Другой случай, когда маска у нас, например, 30 бит, а не 24. К примеру 172.16.2.4/30. Распишем это так:

IP-адрес. Десятичная запись

172

16

2

4

IP-адрес. Двоичная запись

10101100

00010000

00000010

00000100

Маска подсети. Двоичная запись

11111111

11111111

11111111

11111100

Маска подсети. Десятичная запись

255

255

255

252

Как видите, для этой подсети могут меняться только последние два бита. Последний октет может принимать следующие 4 значения: 00000100 — адрес подсети (4 в десятичной системе) 00000101 — адрес узла (5) 00000110 — адрес узла (6) 00000111 — широковещательный (7) Всё, что за пределами этого — уже другая подсеть

То есть теперь вам должно быть чуть-чуть понятно, что маска подсети — это последовательность 32-х бит, где сначала идут единицы, означающие адрес подсети, потом идут нули, означающие адрес хоста. При этом чередоваться нули и единицы в маске не могут. То есть маска 11111111.11100000.11110111.00000000 невозможна

А что же такое обратная маска (wildcard)? Для подавляющего большинства админов и некоторых инженеров — это не более, чем инверсия обычной маски. То есть нули вначале задают адрес части, которая должна совпадать обязательно, а единицы наоборот свободную часть. То есть на взятом нами первом примере, если вы хотите отфильтровать все хосты из подсети 172.16.5.0/24, то вы зададите правило в Access-листе: …. 172.16.5.0 0.0.0.255 Потому что обратная маска будет выглядеть так:

00000000.00000000.00000000.11111111

Во втором примере с сетью 172.16.2.4/30 обратная маска будет выглядеть так: 30 нулей и две единицы:

Обратная маска. Двоичная запись

00000000

00000000

00000000

00000011

Обратная маска. Десятичная запись

0

0

0

3

Соответственно параметр в access-листе будет выглядеть так: …. 172.16.2.4 0.0.0.3 Позже, когда вы съедите собаку на просчётах масок и обратных масок, вы запомните самые употребляемые цифры, количество хостов в той или иной маске, поймёте, что в описанных ситуациях последний октет обратной маски получается вычитанием из 255 цифры последнего октета обычной маски (255-252=3) и т.д. А пока нужно много трудиться и считать)

Но на самом деле обратная маска — это несколько более богатый инструмент, здесь вы можете объединять адреса внутри одной подсети или даже объединять подсети, но самое главное отличие, вы можете чередовать нули и единицы. Это позволяет вам, например, отфильтровать определённый узел (или группу) в нескольких подсетях одной строкой.

Пример 1

Дано: сеть 172.16.16.0/24 Надо: отфильтровать первые 64 адреса (172.16.16.0-172.16.16.63) Решение: 172.16.16.0 0.0.0.63

Пример 2

Дано: сети 172.16.16.0/24 и 172.16.17.0/24 Надо: отфильтровать адреса из обеих сетей Решение: 172.16.16.0 0.0.1.255

Пример 3

Дано: Сети 172.16.0.0-172.16.255.0 Надо: отфильтровать хост с адресом 4 из всех подсетей Решение: 172.16.0.4 0.0.255.0

Признаться ни разу в жизни не приходилось встречаться с последним сценарием применения. Это какие-то жутко специфические должны быть задачи. Более подробно об обратных масках можно прочитать тут: http://habrahabr.ru/post/131712/

Работа ACL в картинках

Гипотетическая сеть:

1) На маршрутизаторе RT1 на интерфейсе FE0/1 на вход у нас разрешено всё, кроме ICMP.

2) На маршрутизаторе RT2 на интерфейсе FE0/1 на выход запрещены SSH и TELNET

Дополнения

1) Правила, действующие на исходящий трафик (out) не будут фильтровать трафик самого устройства. То есть, если нужно запретить самой циске доступ куда-либо, то вам придётся на этом интерфейсе фильтровать входящий трафик (ответный оттуда, куда надо запретить доступ).

2) C ACL надо быть аккуратнее. При небольшой ошибке в правиле, неправильном порядке настройки или вообще плохо продуманном списке вы можете остаться без доступа к устройству. Например, вы хотите закрыть доступ куда угодно для сети 172.16.6.0/24, кроме своего адреса 172.16.6.61 и задаёте правила так:

deny ip 172.16.6.0 0.0.0.255 any
permit ip host 172.16.6.61 any

Как только вы примените ACL на интерфейс, вы сразу потеряете доступ к маршрутизатору, потому что вы попадаете под первое правило и второе даже не проверяется. Вторая неприятная ситуация, которая может с вами приключиться: под ACL попадёт трафик, который не должен был попасть. Вообразите такую ситуацию: у нас в серверной есть FTP-сервер в пассивном режиме. Для доступа к нему вы открыли 21-й порт в ACL Servers-out. После первичного установления соединения FTP-сервер сообщает клиенту порт, по которому он готов передавать/принимать файлы, например, 1523-й. Клиент пытается установить TCP-соединение на этот порт, но натыкается на ACL Servers-out, где такого разрешения нету — так и кончается сказка про успешный трансфер. В нашем примере выше, где мы настраивали доступ на файловый сервер, мы открыли доступ только по 20 и 21-му, потому что для примера этого достаточно. В реальной жизни придётся повозиться. Немного примеров конфигурации ACL для распространенных случаев.

3) Из 2-го пункта вытекает очень похожая и интересная проблема. Вздумалось вам, например повесить на интерфейс в интернет такие вот ACL:

access-list out permit tcp host 1.1.1.1 host 2.2.2.2 eq 80
access-list in permit tcp host 2.2.2.2 any eq 80

Казалось бы: хосту с адресом 1.1.1.1 разрешён доступ по 80-му порту на сервер 2.2.2.2 (первое правило). И обратно от сервера 2.2.2.2 разрешены соединения внутрь. Но нюанс тут в том, что компьютер 1.1.1.1 устанавливает соединение НА 80-й порт, но С какого-то другого, например, 1054, то есть ответный пакет от сервера приходит на сокет 1.1.1.1:1054, не подпадает под правило в ACL на IN и отбрасывается ввиду неявного deny ip any any. Чтобы избежать такой ситуации, и не открывать всем пучком порты, можно прибегнуть к такой хитрости в ACL на in:

permit tcp host 2.2.2.2 any established.

Подробности такого решения в одной из следующих статей.

4) Говоря про современный мир, нельзя обойти такой инструмент, как объектные группы (Object-group).

Допустим, надо составить ACL, выпускающий три определенных адреса в интернет по трем одинаковым портам c перспективой расширения количества адресов и портов. Как это выглядит без знания объектных групп:

ip access-list extended TO-INTERNET
permit tcp host 172.16.6.66 any eq 80
permit tcp host 172.16.6.66 any eq 8080
permit tcp host 172.16.6.66 any eq 443
permit tcp host 172.16.6.67 any eq 80
permit tcp host 172.16.6.67 any eq 8080
permit tcp host 172.16.6.67 any eq 443
permit tcp host 172.16.6.68 any eq 80
permit tcp host 172.16.6.68 any eq 8080
permit tcp host 172.16.6.68 any eq 443

При увеличении количества параметров сопровождать такой ACL становится всё труднее и труднее, легко ошибиться при настройке. Зато, если обратиться к объектным группам, то это приобретает следующий вид:

object-group service INET-PORTS
description Ports allowed for some hosts
tcp eq www
tcp eq 8080
tcp eq 443

object-group network HOSTS-TO-INET
description Hosts allowed to browse the net
host 172.16.6.66
host 172.16.6.67
host 172.16.6.68

ip access-list extended INET-OUT
permit object-group INET-PORTS object-group HOSTS-TO-INET any

на первый взгляд несколько угрожающе выглядит, но если разобраться, то это очень удобно.

4) Очень полезную для траблшутинга информацию можно получить из вывода команды show ip access-lists %имя ACL%. Кроме собственно списка правил указанного ACL, эта команда показывает количество совпадений по каждому правилу.

msk-arbat-gw1#sh ip access-lists nat-inet
Extended IP access list nat-inet
permit tcp 172.16.3.0 0.0.0.255 host 192.0.2.2 eq www
permit ip 172.16.5.0 0.0.0.255 host 192.0.2.3
permit ip 172.16.5.0 0.0.0.255 host 192.0.2.4
permit ip host 172.16.4.123 any
permit ip host 172.16.6.61 any
permit ip host 172.16.6.66 any(4 match(es))
permit ip host 172.16.16.222 any
permit ip host 172.16.17.222 any
permit ip host 172.16.24.222 any

А дописав в конце любого правила log, мы сможем получать сообщения о каждом совпадении в консоль. (последнее не работает в PT)

Last updated